Suppr超能文献

用于治疗胶质母细胞瘤的pH敏感型O6-苄基鸟苷聚合物修饰磁性纳米颗粒

pH-Sensitive O6-Benzylguanosine Polymer Modified Magnetic Nanoparticles for Treatment of Glioblastomas.

作者信息

Stephen Zachary R, Gebhart Rachel N, Jeon Mike, Blair Allison A, Ellenbogen Richard G, Silber John R, Zhang Miqin

机构信息

Department of Materials Science and Engineering, ‡Department of Chemistry, §Department of Biochemistry, ∥Department of Neurological Surgery, and ⊥Department of Radiology, University of Washington , Seattle, Washington 98195, United States.

出版信息

Bioconjug Chem. 2017 Jan 18;28(1):194-202. doi: 10.1021/acs.bioconjchem.6b00545. Epub 2016 Dec 12.

Abstract

Nanoparticle-mediated delivery of chemotherapeutics has demonstrated potential in improving anticancer efficacy by increasing serum half-life and providing tissue specificity and controlled drug release to improve biodistribution of hydrophobic chemotherapeutics. However, suboptimal drug loading, particularly for solid core nanoparticles (NPs), remains a challenge that limits their clinical application. In this study we formulated a NP coated with a pH-sensitive polymer of O-methylguanine-DNA methyltransferase (MGMT) inhibitor analog, dialdehyde modified O-benzylguanosine (DABGS) to achieve high drug loading, and polyethylene glycol (PEG) to ameliorate water solubility and maintain NP stability. The base nanovector consists of an iron oxide core (9 nm) coated with hydrazide functionalized PEG (IOPH). DABGS and PEG-dihydrazide were polymerized on the iron oxide nanoparticle surface (IOPH-pBGS) through acid-labile hydrazone bonds utilizing a rapid, freeze-thaw catalysis approach. DABGS polymerization was confirmed by FTIR and quantitated by UV-vis spectroscopy. IOPH-pBGS demonstrated excellent drug loading of 33.4 ± 5.1% by weight while maintaining small size (36.5 ± 1.8 nm). Drug release was monitored at biologically relevant pHs and demonstrated pH dependent release with maximum release at pH 5.5 (intracellular conditions), and minimal release at physiological pH (7.4). IOPH-pBGS significantly suppressed activity of MGMT and potentiated Temozolomide (TMZ) toxicity in vitro, demonstrating potential as a new treatment option for glioblastomas (GBMs).

摘要

纳米颗粒介导的化疗药物递送已显示出通过延长血清半衰期、提供组织特异性和控制药物释放来改善疏水性化疗药物的生物分布,从而提高抗癌疗效的潜力。然而,次优的药物负载,特别是对于实心核纳米颗粒(NP),仍然是限制其临床应用的一个挑战。在本研究中,我们制备了一种纳米颗粒,其表面包覆有对pH敏感的O-甲基鸟嘌呤-DNA甲基转移酶(MGMT)抑制剂类似物、二醛修饰的O-苄基鸟苷(DABGS)以实现高药物负载,以及聚乙二醇(PEG)以改善水溶性并维持纳米颗粒的稳定性。基础纳米载体由包覆有酰肼功能化PEG的氧化铁核(9纳米)(IOPH)组成。利用快速冻融催化方法,通过酸不稳定的腙键将DABGS和PEG-二酰肼聚合在氧化铁纳米颗粒表面(IOPH-pBGS)。通过傅里叶变换红外光谱(FTIR)确认DABGS的聚合,并通过紫外可见光谱进行定量。IOPH-pBGS显示出优异的重量药物负载率为33.4±5.1%,同时保持较小尺寸(36.5±1.8纳米)。在生理相关的pH值下监测药物释放,结果表明其具有pH依赖性释放,在pH 5.5(细胞内条件)下释放最大,在生理pH(7.4)下释放最小。IOPH-pBGS在体外显著抑制MGMT的活性并增强替莫唑胺(TMZ)的毒性,显示出作为胶质母细胞瘤(GBM)新治疗选择的潜力。

相似文献

1
pH-Sensitive O6-Benzylguanosine Polymer Modified Magnetic Nanoparticles for Treatment of Glioblastomas.
Bioconjug Chem. 2017 Jan 18;28(1):194-202. doi: 10.1021/acs.bioconjchem.6b00545. Epub 2016 Dec 12.
2
Amphiphilic polymer-mediated formation of laponite-based nanohybrids with robust stability and pH sensitivity for anticancer drug delivery.
ACS Appl Mater Interfaces. 2014 Oct 8;6(19):16687-95. doi: 10.1021/am5032874. Epub 2014 Sep 15.
4
5
Polymer grafted magnetic nanoparticles for delivery of anticancer drug at lower pH and elevated temperature.
J Colloid Interface Sci. 2016 Apr 1;467:70-80. doi: 10.1016/j.jcis.2016.01.008. Epub 2016 Jan 6.
6
Temozolomide nanoparticles for targeted glioblastoma therapy.
ACS Appl Mater Interfaces. 2015 Apr 1;7(12):6674-82. doi: 10.1021/am5092165. Epub 2015 Mar 18.
7
Temozolomide-loaded PLGA nanoparticles to treat glioblastoma cells: a biophysical and cell culture evaluation.
Neurol Res. 2016 Jan;38(1):51-9. doi: 10.1080/01616412.2015.1133025. Epub 2016 Feb 22.

引用本文的文献

2
Biomimetic nanotherapeutics for targeted drug delivery to glioblastoma multiforme.
Bioeng Transl Med. 2023 Feb 14;8(3):e10483. doi: 10.1002/btm2.10483. eCollection 2023 May.
4
Accessing Intracellular Targets through Nanocarrier-Mediated Cytosolic Protein Delivery.
Trends Pharmacol Sci. 2020 Oct;41(10):743-754. doi: 10.1016/j.tips.2020.08.005. Epub 2020 Sep 2.
6
Cocaine analogue conjugated magnetic nanoparticles for labeling and imaging dopaminergic neurons.
Biomater Sci. 2020 Aug 7;8(15):4166-4175. doi: 10.1039/d0bm00546k. Epub 2020 Jun 9.
7
Nanoparticle Drug Delivery System for Glioma and Its Efficacy Improvement Strategies: A Comprehensive Review.
Int J Nanomedicine. 2020 Apr 17;15:2563-2582. doi: 10.2147/IJN.S243223. eCollection 2020.
8
Time-Resolved MRI Assessment of Convection-Enhanced Delivery by Targeted and Nontargeted Nanoparticles in a Human Glioblastoma Mouse Model.
Cancer Res. 2019 Sep 15;79(18):4776-4786. doi: 10.1158/0008-5472.CAN-18-2998. Epub 2019 Jul 22.
9
Dacarbazine nanoparticle topical delivery system for the treatment of melanoma.
Sci Rep. 2017 Nov 28;7(1):16517. doi: 10.1038/s41598-017-16878-1.

本文引用的文献

1
Retinoblastoma Binding Protein 4 Modulates Temozolomide Sensitivity in Glioblastoma by Regulating DNA Repair Proteins.
Cell Rep. 2016 Mar 22;14(11):2587-98. doi: 10.1016/j.celrep.2016.02.045. Epub 2016 Mar 10.
2
Oxime Catalysis by Freezing.
Bioconjug Chem. 2016 Jan 20;27(1):42-6. doi: 10.1021/acs.bioconjchem.5b00611. Epub 2015 Dec 15.
3
Nanoscale theranostics for physical stimulus-responsive cancer therapies.
Biomaterials. 2015 Dec;73:214-30. doi: 10.1016/j.biomaterials.2015.09.018. Epub 2015 Sep 14.
4
Nonsurgical treatment of recurrent glioblastoma.
Curr Oncol. 2015 Aug;22(4):e273-81. doi: 10.3747/co.22.2436.
5
pH-Responsive Isoniazid-Loaded Nanoparticles Markedly Improve Tuberculosis Treatment in Mice.
Small. 2015 Oct;11(38):5066-78. doi: 10.1002/smll.201500937. Epub 2015 Jul 20.
7
Redox-responsive magnetic nanoparticle for targeted convection-enhanced delivery of O6-benzylguanine to brain tumors.
ACS Nano. 2014 Oct 28;8(10):10383-95. doi: 10.1021/nn503735w. Epub 2014 Sep 29.
8
Insight into nanoparticle cellular uptake and intracellular targeting.
J Control Release. 2014 Sep 28;190:485-99. doi: 10.1016/j.jconrel.2014.06.038. Epub 2014 Jun 28.
9
Endocytosis and exocytosis of nanoparticles in mammalian cells.
Int J Nanomedicine. 2014 May 6;9 Suppl 1(Suppl 1):51-63. doi: 10.2147/IJN.S26592. eCollection 2014.
10
Magnetic pH-responsive nanocarrier with long spacer length and high colloidal stability for controlled delivery of doxorubicin.
Colloids Surf B Biointerfaces. 2014 Apr 1;116:49-54. doi: 10.1016/j.colsurfb.2013.12.048. Epub 2013 Dec 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验