Suppr超能文献

通过特定肺段内皮细胞的被动重力驱动播种,实现大鼠肺支架的再内皮化。

Re-endothelialization of rat lung scaffolds through passive, gravity-driven seeding of segment-specific pulmonary endothelial cells.

机构信息

Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA.

Bioinnovation PhD Program, Tulane University, New Orleans, LA, USA.

出版信息

J Tissue Eng Regen Med. 2018 Feb;12(2):e786-e806. doi: 10.1002/term.2382. Epub 2017 May 7.

Abstract

Effective re-endothelialization is critical for the use of decellularized scaffolds for ex vivo lung engineering. Current approaches yield insufficiently re-endothelialized scaffolds that haemorrhage and become thrombogenic upon implantation. Herein, gravity-driven seeding coupled with bioreactor culture facilitated widespread distribution and engraftment of endothelial cells throughout rat lung scaffolds. Initially, human umbilical vein endothelial cells were seeded into the pulmonary artery by either gravity-driven, variable flow perfusion seeding or pump-driven, pulsatile flow perfusion seeding. Gravity seeding evenly distributed cells and supported cell survival and re-lining of the vascular walls while perfusion pump-driven seeding led to increased cell fragmentation and death. Using gravity seeding, rat pulmonary artery endothelial cells and rat pulmonary vein endothelial cells attached in intermediate and large vessels, while rat pulmonary microvascular endothelial cells deposited mostly in microvessels. Combination seeding of these cells led to positive vascular endothelial cadherin staining. In addition, combination seeding improved barrier function as assessed by serum albumin extravasation; however, leakage was observed in the distal portions of the re-endothelialized tissue suggesting that recellularization of the alveoli is necessary to complete barrier function of the capillary-alveolar network. Overall, these data indicate that vascular recellularization of rat lung scaffolds is achieved through gravity seeding. Copyright © 2016 John Wiley & Sons, Ltd.

摘要

有效的再内皮化对于使用脱细胞支架进行肺体外工程至关重要。目前的方法产生的再内皮化支架不足,在植入后会出血并形成血栓。在此,重力驱动播种与生物反应器培养相结合,促进了内皮细胞在大鼠肺支架中的广泛分布和植入。最初,通过重力驱动的可变流量灌注播种或泵驱动的脉动流量灌注播种将人脐静脉内皮细胞播种到肺动脉中。重力播种均匀地分布细胞,并支持细胞的存活和血管壁的再衬里,而灌注泵驱动的播种导致细胞碎片增加和死亡。使用重力播种,大鼠肺动脉内皮细胞和大鼠肺静脉内皮细胞附着在中等和大血管中,而大鼠肺微血管内皮细胞主要沉积在微血管中。这些细胞的组合播种导致血管内皮钙黏蛋白染色阳性。此外,组合播种提高了血清白蛋白外渗评估的屏障功能;然而,在再内皮化组织的远端部分观察到渗漏,这表明需要肺泡的再细胞化来完成毛细血管-肺泡网络的屏障功能。总体而言,这些数据表明,大鼠肺支架的血管再内皮化是通过重力播种实现的。版权所有©2016 约翰威立父子有限公司

相似文献

1
Re-endothelialization of rat lung scaffolds through passive, gravity-driven seeding of segment-specific pulmonary endothelial cells.
J Tissue Eng Regen Med. 2018 Feb;12(2):e786-e806. doi: 10.1002/term.2382. Epub 2017 May 7.
2
Enhanced Re-Endothelialization of Decellularized Rat Lungs.
Tissue Eng Part C Methods. 2016 May;22(5):439-50. doi: 10.1089/ten.TEC.2016.0012. Epub 2016 Apr 1.
3
Optimizing recellularization of whole decellularized heart extracellular matrix.
PLoS One. 2014 Feb 27;9(2):e90406. doi: 10.1371/journal.pone.0090406. eCollection 2014.
4
Vasculature reconstruction of decellularized liver scaffolds via gelatin-based re-endothelialization.
J Biomed Mater Res A. 2019 Feb;107(2):392-402. doi: 10.1002/jbm.a.36551. Epub 2018 Dec 3.
6
Heparin-gelatin mixture improves vascular reconstruction efficiency and hepatic function in bioengineered livers.
Acta Biomater. 2016 Jul 1;38:82-93. doi: 10.1016/j.actbio.2016.04.042. Epub 2016 Apr 28.
8
Decellularized porcine coronary artery with adipose stem cells for vascular tissue engineering.
Biomed Mater. 2019 Jun 4;14(4):045014. doi: 10.1088/1748-605X/ab2329.
10
Vascularization of Natural and Synthetic Bone Scaffolds.
Cell Transplant. 2018 Aug;27(8):1269-1280. doi: 10.1177/0963689718782452. Epub 2018 Jul 16.

引用本文的文献

1
Computer vision to predict cell seeding coverage in re-endothelialized mouse lungs.
Sci Rep. 2025 Jul 19;15(1):26236. doi: 10.1038/s41598-025-11272-8.
2
Two Decades of Advances and Limitations in Organ Recellularization.
Curr Issues Mol Biol. 2024 Aug 22;46(8):9179-9214. doi: 10.3390/cimb46080543.
4
Vascular reconstruction of the decellularized biomatrix for whole-organ engineering-a critical perspective and future strategies.
Front Bioeng Biotechnol. 2023 Nov 13;11:1221159. doi: 10.3389/fbioe.2023.1221159. eCollection 2023.
5
Lung endothelium, tau, and amyloids in health and disease.
Physiol Rev. 2024 Apr 1;104(2):533-587. doi: 10.1152/physrev.00006.2023. Epub 2023 Aug 10.
6
Angiogenesis and Re-endothelialization in decellularized scaffolds: Recent advances and current challenges in tissue engineering.
Front Bioeng Biotechnol. 2023 Feb 16;11:1103727. doi: 10.3389/fbioe.2023.1103727. eCollection 2023.
7
Bioengineering and Clinical Translation of Human Lung and its Components.
Adv Biol (Weinh). 2023 Apr;7(4):e2200267. doi: 10.1002/adbi.202200267. Epub 2023 Jan 19.
8
Bioactive Cell-Derived ECM Scaffold Forms a Unique Cellular Microenvironment for Lung Tissue Engineering.
Biomedicines. 2022 Jul 26;10(8):1791. doi: 10.3390/biomedicines10081791.
9
Emerging Paradigms in Bioengineering the Lungs.
Bioengineering (Basel). 2022 May 1;9(5):195. doi: 10.3390/bioengineering9050195.
10
Cell Inertia: Predicting Cell Distributions in Lung Vasculature to Optimize Re-endothelialization.
Front Bioeng Biotechnol. 2022 Apr 27;10:891407. doi: 10.3389/fbioe.2022.891407. eCollection 2022.

本文引用的文献

1
Caspase-1 Activation Protects Lung Endothelial Barrier Function during Infection-Induced Stress.
Am J Respir Cell Mol Biol. 2016 Oct;55(4):500-510. doi: 10.1165/rcmb.2015-0386OC.
2
Enhanced Re-Endothelialization of Decellularized Rat Lungs.
Tissue Eng Part C Methods. 2016 May;22(5):439-50. doi: 10.1089/ten.TEC.2016.0012. Epub 2016 Apr 1.
3
Revascularization of decellularized lung scaffolds: principles and progress.
Am J Physiol Lung Cell Mol Physiol. 2015 Dec 1;309(11):L1273-85. doi: 10.1152/ajplung.00237.2015. Epub 2015 Sep 25.
4
Engineering pulmonary vasculature in decellularized rat and human lungs.
Nat Biotechnol. 2015 Oct;33(10):1097-102. doi: 10.1038/nbt.3354. Epub 2015 Sep 14.
5
Arterial specification of endothelial cells derived from human induced pluripotent stem cells in a biomimetic flow bioreactor.
Biomaterials. 2015;53:621-33. doi: 10.1016/j.biomaterials.2015.02.121. Epub 2015 Mar 24.
6
A review of cellularization strategies for tissue engineering of whole organs.
Front Bioeng Biotechnol. 2015 Mar 30;3:43. doi: 10.3389/fbioe.2015.00043. eCollection 2015.
7
Strategies for whole lung tissue engineering.
IEEE Trans Biomed Eng. 2014 May;61(5):1482-96. doi: 10.1109/TBME.2014.2314261. Epub 2014 Mar 28.
8
Optimizing recellularization of whole decellularized heart extracellular matrix.
PLoS One. 2014 Feb 27;9(2):e90406. doi: 10.1371/journal.pone.0090406. eCollection 2014.
9
Enhanced reseeding of decellularized rodent lungs with mouse embryonic stem cells.
Biomaterials. 2014 Mar;35(10):3252-62. doi: 10.1016/j.biomaterials.2013.12.093. Epub 2014 Jan 15.
10
Hypertensive rat lungs retain hallmarks of vascular disease upon decellularization but support the growth of mesenchymal stem cells.
Tissue Eng Part A. 2014 May;20(9-10):1426-43. doi: 10.1089/ten.TEA.2013.0438. Epub 2014 Feb 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验