Desailly Yann, Tissier Anne-Marie, Correas Jean-Michel, Wintzenrieth Frédéric, Tanter Mickaël, Couture Olivier
CNRS, INSERM, ESPCI Paris, PSL Research University, Institut Langevin, 1 rue Jussieu, F-75005, Paris, France.
Phys Med Biol. 2017 Jan 7;62(1):31-42. doi: 10.1088/1361-6560/62/1/31. Epub 2016 Dec 14.
Contrast enhanced ultrasound (CEUS) takes advantage of the nonlinear behaviour of injected microbubbles. If these contrast techniques yield good specificity between bubbles and tissues, they suffer some drawbacks, inherently linked to their dependence on nonlinear content. In recent years, plane-wave ultrasound reached frame rates of up to 20 000 fps. In this study we propose a linear technique for CEUS that takes advantage of these very high frame rates to separate bubbles from tissue without requiring nonlinearities. Data-driven spatiotemporal filtering operations are used to separate different features in the image on the basis of coherence both in space and time. Such filter recently proved to improve Doppler sensitivity (Demene et al 2015 IEEE Trans. Med. Imaging 34 2271-85). In contrast with bubbles, even slow moving ones, tissues are highly coherent both in space and time. Therefore, singular value decomposition (SVD) seems to be a powerful tool for the separation of contrast agents and tissues. In this paper, we apply SVD processing to linear ultrafast ultrasound images for CEUS Doppler. The contrast levels reached by this technique were compared to those of a nonlinear gold standard sequence (PMPI Doppler) through a flow phantom study. The SVD technique reached contrast-to-tissue ratios (CTR) up to 10 dB higher in vitro, and proved to be robust in terms of probe motion and slow flow. A trial was also conducted on a transplanted human kidney, already imaged by means of power Doppler (Claudon et al 1999 Am. J. Roentgenol. 173 41-6) and microbubbles (Kay et al 2009 Clin. Radiol. 64 1081-7). Contrast levels yielded by the SVD technique measured up to 13 dB higher than those of PMPI Doppler.
超声造影(CEUS)利用注入的微泡的非线性行为。如果这些造影技术在微泡与组织之间具有良好的特异性,那么它们也存在一些缺点,这些缺点与其对非线性成分的依赖有着内在联系。近年来,平面波超声的帧率高达20000帧/秒。在本研究中,我们提出了一种用于CEUS的线性技术,该技术利用这些非常高的帧率在不需要非线性的情况下将微泡与组织分离。基于空间和时间上的相干性,采用数据驱动的时空滤波操作来分离图像中的不同特征。最近证明这种滤波器能提高多普勒灵敏度(德梅内等人,《IEEE医学成像杂志》,2015年,第34卷,第2271 - 2285页)。与微泡不同,即使是缓慢移动的微泡,组织在空间和时间上都是高度相干的。因此,奇异值分解(SVD)似乎是分离造影剂和组织的有力工具。在本文中,我们将SVD处理应用于用于CEUS多普勒的线性超快超声图像。通过流动仿体研究,将该技术达到的造影水平与非线性金标准序列(脉冲反相谐波成像(PMPI)多普勒)的造影水平进行了比较。SVD技术在体外达到的对比组织比(CTR)高达高10 dB,并且在探头运动和慢血流方面表现出稳健性。还对一个已通过功率多普勒(克劳登等人,《美国放射学杂志》,1999年,第173卷,第41 - 46页)和微泡(凯等人,《临床放射学》,2009年,第64卷,第1081 - 1087页)成像的移植人肾进行了试验。SVD技术产生的造影水平比PMPI多普勒测量的造影水平高13 dB。