Suppr超能文献

基于长短期记忆神经网络的无定位超分辨率微泡速度测量。

Localization Free Super-Resolution Microbubble Velocimetry Using a Long Short-Term Memory Neural Network.

出版信息

IEEE Trans Med Imaging. 2023 Aug;42(8):2374-2385. doi: 10.1109/TMI.2023.3251197. Epub 2023 Aug 1.

Abstract

Ultrasound localization microscopy is a super-resolution imaging technique that exploits the unique characteristics of contrast microbubbles to side-step the fundamental trade-off between imaging resolution and penetration depth. However, the conventional reconstruction technique is confined to low microbubble concentrations to avoid localization and tracking errors. Several research groups have introduced sparsity- and deep learning-based approaches to overcome this constraint to extract useful vascular structural information from overlapping microbubble signals, but these solutions have not been demonstrated to produce blood flow velocity maps of the microcirculation. Here, we introduce Deep-SMV, a localization free super-resolution microbubble velocimetry technique, based on a long short-term memory neural network, that provides high imaging speed and robustness to high microbubble concentrations, and directly outputs blood velocity measurements at a super-resolution. Deep-SMV is trained efficiently using microbubble flow simulation on real in vivo vascular data and demonstrates real-time velocity map reconstruction suitable for functional vascular imaging and pulsatility mapping at super-resolution. The technique is successfully applied to a wide variety of imaging scenarios, include flow channel phantoms, chicken embryo chorioallantoic membranes, and mouse brain imaging. An implementation of Deep-SMV is openly available at https://github.com/chenxiptz/SR_microvessel_velocimetry, with two pre-trained models available at https://doi.org/10.7910/DVN/SECUFD.

摘要

超声定位显微镜是一种超分辨率成像技术,利用对比微泡的独特特性,避免了成像分辨率和穿透深度之间的基本权衡。然而,传统的重建技术仅限于低浓度的微泡,以避免定位和跟踪误差。一些研究小组已经引入了基于稀疏性和深度学习的方法来克服这一限制,从重叠的微泡信号中提取有用的血管结构信息,但这些解决方案尚未被证明可以产生微循环的血流速度图。在这里,我们介绍了一种基于长短期记忆神经网络的无定位超分辨率微泡速度测量技术 Deep-SMV,该技术具有高成像速度和对高浓度微泡的鲁棒性,并直接输出超分辨率的血流速度测量值。Deep-SMV 可以有效地利用真实血管数据的微泡流模拟进行训练,并展示了适用于超分辨率功能血管成像和脉动映射的实时速度图重建。该技术已成功应用于各种成像场景,包括流动通道体模、鸡胚绒毛尿囊膜和小鼠大脑成像。Deep-SMV 的实现可在 https://github.com/chenxiptz/SR_microvessel_velocimetry 上获得,两个预训练模型可在 https://doi.org/10.7910/DVN/SECUFD 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e381/10461750/091711aa3bc5/nihms-1921899-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验