Suppr超能文献

肿瘤起始、进展和药物敏感性的复发结构。

The recurrent architecture of tumour initiation, progression and drug sensitivity.

作者信息

Califano Andrea, Alvarez Mariano J

机构信息

Department of Systems Biology, Columbia University, and the Departments of Biomedical Informatics, Biochemistry and Molecular Biophysics, JP Sulzberger Columbia Genome Center, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA.

DarwinHealth, Inc., 3960 Broadway, Suite 540, New York, New York 10032, USA.

出版信息

Nat Rev Cancer. 2017 Feb;17(2):116-130. doi: 10.1038/nrc.2016.124. Epub 2016 Dec 15.

Abstract

Recent studies across multiple tumour types are starting to reveal a recurrent regulatory architecture in which genomic alterations cluster upstream of functional master regulator (MR) proteins, the aberrant activity of which is both necessary and sufficient to maintain tumour cell state. These proteins form small, hyperconnected and autoregulated modules (termed tumour checkpoints) that are increasingly emerging as optimal biomarkers and therapeutic targets. Crucially, as their activity is mostly dysregulated in a post-translational manner, rather than by mutations in their corresponding genes or by differential expression, the identification of MR proteins by conventional methods is challenging. In this Opinion article, we discuss novel methods for the systematic analysis of MR proteins and of the modular regulatory architecture they implement, including their use as a valuable reductionist framework to study the genetic heterogeneity of human disease and to drive key translational applications.

摘要

近期针对多种肿瘤类型的研究开始揭示一种反复出现的调控架构,其中基因组改变聚集在功能性主调控蛋白(MR)上游,这些蛋白的异常活性对于维持肿瘤细胞状态既必要又充分。这些蛋白形成小型、高度连接且自我调节的模块(称为肿瘤检查点),越来越多地成为最佳生物标志物和治疗靶点。至关重要的是,由于它们的活性大多在翻译后水平失调,而非通过其相应基因的突变或差异表达,用传统方法鉴定MR蛋白具有挑战性。在这篇观点文章中,我们讨论了用于系统分析MR蛋白及其所实施的模块化调控架构的新方法,包括将其用作一个有价值的简化框架来研究人类疾病的遗传异质性并推动关键的转化应用。

相似文献

1
The recurrent architecture of tumour initiation, progression and drug sensitivity.
Nat Rev Cancer. 2017 Feb;17(2):116-130. doi: 10.1038/nrc.2016.124. Epub 2016 Dec 15.
2
From oncogene to network addiction: the new frontier of cancer genomics and therapeutics.
Future Oncol. 2008 Aug;4(4):569-77. doi: 10.2217/14796694.4.4.569.
3
Stem cells in cancer initiation and progression.
J Cell Biol. 2020 Jan 6;219(1). doi: 10.1083/jcb.201911053.
4
The 1984 Walter Hubert lecture. Activation of transforming genes in neoplasms.
Br J Cancer. 1984 Aug;50(2):137-42. doi: 10.1038/bjc.1984.155.
5
MicroRNAs: master regulators of drug resistance, stemness, and metastasis.
J Mol Med (Berl). 2014 Apr;92(4):321-36. doi: 10.1007/s00109-014-1129-2. Epub 2014 Feb 9.
6
The transcriptional network for mesenchymal transformation of brain tumours.
Nature. 2010 Jan 21;463(7279):318-25. doi: 10.1038/nature08712. Epub 2009 Dec 23.
7
Extracellular vesicle communication pathways as regulatory targets of oncogenic transformation.
Semin Cell Dev Biol. 2017 Jul;67:11-22. doi: 10.1016/j.semcdb.2017.01.003. Epub 2017 Jan 8.
8
Small molecules with big effects: the role of the microRNAome in cancer and carcinogenesis.
Mutat Res. 2011 Jun 17;722(2):94-105. doi: 10.1016/j.mrgentox.2010.05.006. Epub 2010 May 21.
9
Role of the RNA-binding protein La in cancer pathobiology.
RNA Biol. 2021 Feb;18(2):218-236. doi: 10.1080/15476286.2020.1792677. Epub 2020 Jul 20.

引用本文的文献

1
Network analysis of master regulators associated with invasive phenotypes in multiple myeloma.
Front Cell Dev Biol. 2025 Jul 16;13:1586870. doi: 10.3389/fcell.2025.1586870. eCollection 2025.
3
SOX10, MITF, and microRNAs: Decoding their interplay in regulating melanoma plasticity.
Int J Cancer. 2025 Oct 1;157(7):1277-1293. doi: 10.1002/ijc.35499. Epub 2025 Jun 3.
4
The regulatory architecture of the primed pluripotent cell state.
Nat Commun. 2025 Apr 9;16(1):3351. doi: 10.1038/s41467-025-57894-4.
5
HDAC7 drives glioblastoma to a mesenchymal-like state via LGALS3-mediated crosstalk between cancer cells and macrophages.
Theranostics. 2024 Oct 21;14(18):7072-7087. doi: 10.7150/thno.100939. eCollection 2024.
6
Normal tissue transcriptional signatures for tumor-type-agnostic phenotype prediction.
Sci Rep. 2024 Nov 8;14(1):27230. doi: 10.1038/s41598-024-76625-1.
7
Few-shot meta-learning applied to whole brain activity maps improves systems neuropharmacology and drug discovery.
iScience. 2024 Sep 3;27(10):110875. doi: 10.1016/j.isci.2024.110875. eCollection 2024 Oct 18.
8
Unravelling the mosaic: Epigenetic diversity in glioblastoma.
Mol Oncol. 2024 Dec;18(12):2871-2889. doi: 10.1002/1878-0261.13706. Epub 2024 Aug 15.
9
Circular RNA in cancer.
Nat Rev Cancer. 2024 Sep;24(9):597-613. doi: 10.1038/s41568-024-00721-7. Epub 2024 Jul 29.
10
Current understanding of functional peptides encoded by lncRNA in cancer.
Cancer Cell Int. 2024 Jul 19;24(1):252. doi: 10.1186/s12935-024-03446-7.

本文引用的文献

1
Functional characterization of somatic mutations in cancer using network-based inference of protein activity.
Nat Genet. 2016 Aug;48(8):838-47. doi: 10.1038/ng.3593. Epub 2016 Jun 20.
2
Regulators of genetic risk of breast cancer identified by integrative network analysis.
Nat Genet. 2016 Jan;48(1):12-21. doi: 10.1038/ng.3458. Epub 2015 Nov 30.
4
Elucidation and Pharmacological Targeting of Novel Molecular Drivers of Follicular Lymphoma Progression.
Cancer Res. 2016 Feb 1;76(3):664-74. doi: 10.1158/0008-5472.CAN-15-0828. Epub 2015 Nov 20.
6
Predicting Drug Response in Human Prostate Cancer from Preclinical Analysis of In Vivo Mouse Models.
Cell Rep. 2015 Sep 29;12(12):2060-71. doi: 10.1016/j.celrep.2015.08.051. Epub 2015 Sep 17.
7
Transcriptional master regulator analysis in breast cancer genetic networks.
Comput Biol Chem. 2015 Dec;59 Pt B:67-77. doi: 10.1016/j.compbiolchem.2015.08.007. Epub 2015 Aug 22.
8
DIGGIT: a Bioconductor package to infer genetic variants driving cellular phenotypes.
Bioinformatics. 2015 Dec 15;31(24):4032-4. doi: 10.1093/bioinformatics/btv499. Epub 2015 Sep 2.
9
Inhibition of the autocrine IL-6-JAK2-STAT3-calprotectin axis as targeted therapy for HR-/HER2+ breast cancers.
Genes Dev. 2015 Aug 1;29(15):1631-48. doi: 10.1101/gad.262642.115. Epub 2015 Jul 30.
10
Identification of neurodegenerative factors using translatome-regulatory network analysis.
Nat Neurosci. 2015 Sep;18(9):1325-33. doi: 10.1038/nn.4070. Epub 2015 Jul 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验