Suppr超能文献

护理研究中时间序列分析的向量自回归模型与格兰杰因果关系:以心肺功能不稳定事件发生前生命体征的动态变化为例

Vector Autoregressive Models and Granger Causality in Time Series Analysis in Nursing Research: Dynamic Changes Among Vital Signs Prior to Cardiorespiratory Instability Events as an Example.

作者信息

Bose Eliezer, Hravnak Marilyn, Sereika Susan M

机构信息

Eliezer Bose, PhD, AGACNP-BC, CCRN, was Assistant Professor, School of Nursing, University of Pittsburgh, Pennsylvania, at the time this research was conducted. He is now Assistant Professor, School of Nursing, The University of Texas at Austin. Marilyn Hravnak, PhD, ACNP-BC, FAAN, is Professor; and Susan M. Sereika, PhD, is Professor, School of Nursing, University of Pittsburgh, Pennsylvania.

出版信息

Nurs Res. 2017 Jan/Feb;66(1):12-19. doi: 10.1097/NNR.0000000000000193.

Abstract

BACKGROUND

Patients undergoing continuous vital sign monitoring (heart rate [HR], respiratory rate [RR], pulse oximetry [SpO2]) in real time display interrelated vital sign changes during situations of physiological stress. Patterns in this physiological cross-talk could portend impending cardiorespiratory instability (CRI). Vector autoregressive (VAR) modeling with Granger causality tests is one of the most flexible ways to elucidate underlying causal mechanisms in time series data.

PURPOSE

The purpose of this article is to illustrate the development of patient-specific VAR models using vital sign time series data in a sample of acutely ill, monitored, step-down unit patients and determine their Granger causal dynamics prior to onset of an incident CRI.

APPROACH

CRI was defined as vital signs beyond stipulated normality thresholds (HR = 40-140/minute, RR = 8-36/minute, SpO2 < 85%) and persisting for 3 minutes within a 5-minute moving window (60% of the duration of the window). A 6-hour time segment prior to onset of first CRI was chosen for time series modeling in 20 patients using a six-step procedure: (a) the uniform time series for each vital sign was assessed for stationarity, (b) appropriate lag was determined using a lag-length selection criteria, (c) the VAR model was constructed, (d) residual autocorrelation was assessed with the Lagrange Multiplier test, (e) stability of the VAR system was checked, and (f) Granger causality was evaluated in the final stable model.

RESULTS

The primary cause of incident CRI was low SpO2 (60% of cases), followed by out-of-range RR (30%) and HR (10%). Granger causality testing revealed that change in RR caused change in HR (21%; i.e., RR changed before HR changed) more often than change in HR causing change in RR (15%). Similarly, changes in RR caused changes in SpO2 (15%) more often than changes in SpO2 caused changes in RR (9%). For HR and SpO2, changes in HR causing changes in SpO2 and changes in SpO2 causing changes in HR occurred with equal frequency (18%).

DISCUSSION

Within this sample of acutely ill patients who experienced a CRI event, VAR modeling indicated that RR changes tend to occur before changes in HR and SpO2. These findings suggest that contextual assessment of RR changes as the earliest sign of CRI is warranted. Use of VAR modeling may be helpful in other nursing research applications based on time series data.

摘要

背景

接受实时生命体征监测(心率[HR]、呼吸频率[RR]、脉搏血氧饱和度[SpO2])的患者在生理应激情况下会出现相互关联的生命体征变化。这种生理交互作用中的模式可能预示着即将发生的心肺不稳定(CRI)。向量自回归(VAR)建模及格兰杰因果检验是阐明时间序列数据潜在因果机制的最灵活方法之一。

目的

本文旨在说明如何利用危重症监护病房病情较轻的监测患者样本中的生命体征时间序列数据,开发针对特定患者的VAR模型,并在CRI事件发生前确定其格兰杰因果动态关系。

方法

CRI定义为生命体征超出规定的正常阈值(HR = 40 - 140次/分钟,RR = 8 - 36次/分钟,SpO2 < 85%),并在5分钟移动窗口内持续3分钟(占窗口持续时间的60%)。在20名患者中,选择首次CRI发作前6小时的时间段进行时间序列建模,采用六步程序:(a)评估每个生命体征的统一时间序列的平稳性,(b)使用滞后长度选择标准确定合适的滞后,(c)构建VAR模型,(d)用拉格朗日乘数检验评估残差自相关,(e)检查VAR系统的稳定性,(f)在最终稳定模型中评估格兰杰因果关系。

结果

CRI事件的主要原因是SpO2降低(60%的病例),其次是RR超出范围(30%)和HR超出范围(10%)。格兰杰因果检验显示,RR变化导致HR变化(21%;即RR先于HR变化)的情况比HR变化导致RR变化(15%)更常见。同样,RR变化导致SpO2变化(15%)的情况比SpO2变化导致RR变化(9%)更常见。对于HR和SpO2,HR变化导致SpO2变化与SpO2变化导致HR变化的频率相同(18%)。

讨论

在这个经历CRI事件的危重症患者样本中,VAR建模表明RR变化往往先于HR和SpO2变化出现。这些发现表明,将RR变化作为CRI最早迹象进行情境评估是有必要的。VAR建模的应用可能有助于基于时间序列数据的其他护理研究。

相似文献

2
Cardiorespiratory instability in monitored step-down unit patients: using cluster analysis to identify patterns of change.
J Clin Monit Comput. 2018 Feb;32(1):117-126. doi: 10.1007/s10877-017-0001-7. Epub 2017 Feb 22.
3
Risk for Cardiorespiratory Instability Following Transfer to a Monitored Step-Down Unit.
Respir Care. 2017 Apr;62(4):415-422. doi: 10.4187/respcare.05001. Epub 2017 Jan 24.
4
Dynamic and Personalized Risk Forecast in Step-Down Units. Implications for Monitoring Paradigms.
Ann Am Thorac Soc. 2017 Mar;14(3):384-391. doi: 10.1513/AnnalsATS.201611-905OC.
5
Real alerts and artifact classification in archived multi-signal vital sign monitoring data: implications for mining big data.
J Clin Monit Comput. 2016 Dec;30(6):875-888. doi: 10.1007/s10877-015-9788-2. Epub 2015 Oct 5.
6
Nursing assessment of continuous vital sign surveillance to improve patient safety on the medical/surgical unit.
J Clin Nurs. 2016 Jan;25(1-2):278-81. doi: 10.1111/jocn.13102. Epub 2015 Nov 4.
7
Development and Comparative Performance of Physiologic Monitoring Strategies in the Emergency Department.
JAMA Netw Open. 2022 Sep 1;5(9):e2233712. doi: 10.1001/jamanetworkopen.2022.33712.
8
Cardiorespiratory instability before and after implementing an integrated monitoring system.
Crit Care Med. 2011 Jan;39(1):65-72. doi: 10.1097/CCM.0b013e3181fb7b1c.
9
Are current wireless monitoring systems capable of detecting adverse events in high-risk surgical patients? A descriptive study.
Injury. 2020 May;51 Suppl 2:S97-S105. doi: 10.1016/j.injury.2019.11.018. Epub 2019 Nov 17.
10
Predicting the need for urgent intubation in a surgical/trauma intensive care unit.
Surgery. 2013 Nov;154(5):1110-6. doi: 10.1016/j.surg.2013.05.025. Epub 2013 Sep 26.

引用本文的文献

2
Major Problems in Clinical Psychological Science and How to Address them. Introducing a Multimodal Dynamical Network Approach.
Cognit Ther Res. 2024 Oct;48(5):791-807. doi: 10.1007/s10608-024-10487-9. Epub 2024 Jun 24.
5
Psychological flexibility and cognitive-affective processes in young adults' daily lives.
Sci Rep. 2024 Apr 8;14(1):8182. doi: 10.1038/s41598-024-58598-3.
7
Increases in Ambulance Call Volume Are an Early Warning Sign of Major COVID-19 Surges in Children.
Int J Environ Res Public Health. 2022 Dec 2;19(23):16152. doi: 10.3390/ijerph192316152.
8
Examining the causal relationship between bike-share and public transit in response to the COVID-19 pandemic.
Cities. 2022 Dec;131:104024. doi: 10.1016/j.cities.2022.104024. Epub 2022 Oct 5.
10
Significance of event related causality (ERC) in eloquent neural networks.
Neural Netw. 2022 May;149:204-216. doi: 10.1016/j.neunet.2022.02.002. Epub 2022 Feb 18.

本文引用的文献

1
A physiological time series dynamics-based approach to patient monitoring and outcome prediction.
IEEE J Biomed Health Inform. 2015 May;19(3):1068-76. doi: 10.1109/JBHI.2014.2330827. Epub 2014 Jun 30.
2
Cardiovascular and cardiorespiratory coupling analyses: a review.
Philos Trans A Math Phys Eng Sci. 2013 Jul 15;371(1997):20120191. doi: 10.1098/rsta.2012.0191. Print 2013 Aug 28.
3
Causal inference with multiple time series: principles and problems.
Philos Trans A Math Phys Eng Sci. 2013 Jul 15;371(1997):20110613. doi: 10.1098/rsta.2011.0613. Print 2013 Aug 28.
4
Discovering shared dynamics in physiological signals: application to patient monitoring in ICU.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:5939-42. doi: 10.1109/EMBC.2012.6347346.
5
Measuring Granger causality between cortical regions from voxelwise fMRI BOLD signals with LASSO.
PLoS Comput Biol. 2012;8(5):e1002513. doi: 10.1371/journal.pcbi.1002513. Epub 2012 May 24.
7
The effect of filtering on Granger causality based multivariate causality measures.
Neuroimage. 2010 Apr 1;50(2):577-88. doi: 10.1016/j.neuroimage.2009.12.050. Epub 2009 Dec 21.
8
Forecasting daily attendances at an emergency department to aid resource planning.
BMC Emerg Med. 2009 Jan 29;9:1. doi: 10.1186/1471-227X-9-1.
9
Healthy living with persuasive technologies: framework, issues, and challenges.
J Am Med Inform Assoc. 2009 Mar-Apr;16(2):171-8. doi: 10.1197/jamia.M2859. Epub 2008 Dec 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验