Gan Rui, Perez Jessica G, Carlson Erik D, Ntai Ioanna, Isaacs Farren J, Kelleher Neil L, Jewett Michael C
Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208-3120.
Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208-3120.
Biotechnol Bioeng. 2017 May;114(5):1074-1086. doi: 10.1002/bit.26239. Epub 2017 Feb 2.
The ability to site-specifically incorporate non-canonical amino acids (ncAAs) into proteins has made possible the study of protein structure and function in fundamentally new ways, as well as the bio synthesis of unnatural polymers. However, the task of site-specifically incorporating multiple ncAAs into proteins with high purity and yield continues to present a challenge. At the heart of this challenge lies the lower efficiency of engineered orthogonal translation system components compared to their natural counterparts (e.g., translation elements that specifically use a ncAA and do not interact with the cell's natural translation apparatus). Here, we show that evolving and tuning expression levels of multiple components of an engineered translation system together as a whole enhances ncAA incorporation efficiency. Specifically, we increase protein yield when incorporating multiple p-azido-phenylalanine(pAzF) residues into proteins by (i) evolving the Methanocaldococcus jannaschii p-azido-phenylalanyl-tRNA synthetase anti-codon binding domain, (ii) evolving the elongation factor Tu amino acid-binding pocket, and (iii) tuning the expression of evolved translation machinery components in a single vector. Use of the evolved translation machinery in a genomically recoded organism lacking release factor one enabled enhanced multi-site ncAA incorporation into proteins. We anticipate that our approach to orthogonal translation system development will accelerate and expand our ability to site-specifically incorporate multiple ncAAs into proteins and biopolymers, advancing new horizons for synthetic and chemical biotechnology. Biotechnol. Bioeng. 2017;114: 1074-1086. © 2016 Wiley Periodicals, Inc.
将非天然氨基酸(ncAAs)位点特异性地掺入蛋白质的能力,使得以全新的方式研究蛋白质结构和功能以及非天然聚合物的生物合成成为可能。然而,将多种非天然氨基酸以高纯度和高产量位点特异性地掺入蛋白质的任务仍然是一项挑战。这一挑战的核心在于,与天然对应物相比,工程化正交翻译系统组件的效率较低(例如,特异性使用非天然氨基酸且不与细胞天然翻译装置相互作用的翻译元件)。在此,我们表明,将工程化翻译系统的多个组件作为一个整体一起进行进化和调整表达水平,可以提高非天然氨基酸的掺入效率。具体而言,当我们通过以下方式将多个对叠氮基苯丙氨酸(pAzF)残基掺入蛋白质时,可提高蛋白质产量:(i)进化嗜热栖热菌对叠氮基苯丙氨酰 - tRNA合成酶反密码子结合结构域;(ii)进化延伸因子Tu的氨基酸结合口袋;(iii)在单个载体中调整进化后的翻译机制组件的表达。在缺乏释放因子1的基因组重编码生物体中使用进化后的翻译机制,能够增强多位点非天然氨基酸掺入蛋白质的能力。我们预计,我们开发正交翻译系统的方法将加速并扩展我们将多种非天然氨基酸位点特异性地掺入蛋白质和生物聚合物的能力,为合成生物技术和化学生物技术开拓新的视野。《生物技术与生物工程》2017年;114卷:1074 - 1086页。© 2016威利期刊公司