DeLey Cox Vanessa E, Cole Megan F, Gaucher Eric A
School of Chemistry and Biochemistry , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States.
Department of Biology , Emory University , Atlanta , Georgia 30322 , United States.
ACS Synth Biol. 2019 Feb 15;8(2):287-296. doi: 10.1021/acssynbio.8b00305. Epub 2019 Jan 15.
Noncanonical amino acid (ncAA) incorporation has led to significant advances in protein science and engineering. Traditionally, in vivo incorporation of ncAAs is achieved via amber codon suppression using an engineered orthogonal aminoacyl-tRNA synthetase:tRNA pair. However, as more complex protein products are targeted, researchers are identifying additional barriers limiting the scope of currently available ncAA systems. One barrier is elongation factor Tu (EF-Tu), a protein responsible for proofreading aa-tRNAs, which substantially restricts ncAA scope by limiting ncaa-tRNA delivery to the ribosome. Researchers have responded by engineering ncAA-compatible EF-Tus for key ncAAs. However, this approach fails to address the extent to which EF-Tu inhibits efficient ncAA incorporation. Here, we demonstrate an alternative strategy leveraging computational analysis to broaden EF-Tu's substrate specificity. Evolutionary analysis of EF-Tu and a naturally evolved specialized elongation factor, SelB, provide the opportunity to engineer EF-Tu by targeting amino acid residues that are associated with functional divergence between the two ancient paralogues. Employing amber codon suppression, in combination with mass spectrometry, we identified two EF-Tu variants with non-native substrate compatibility. Additionally, we present data showing these EF-Tu variants contribute to host organismal fitness, working cooperatively with components of native and engineered translation machinery. These results demonstrate the viability of our computational method and lend support to corresponding assumptions about molecular evolution. This work promotes enhanced polyspecific EF-Tu behavior as a viable strategy to expand ncAA scope and complements ongoing research emphasizing the importance of a comprehensive approach to further expand the genetic code.
非标准氨基酸(ncAA)的掺入在蛋白质科学与工程领域取得了重大进展。传统上,ncAAs的体内掺入是通过使用工程化的正交氨酰-tRNA合成酶:tRNA对进行琥珀密码子抑制来实现的。然而,随着目标蛋白产物越来越复杂,研究人员发现了更多限制现有ncAA系统应用范围的障碍。其中一个障碍是延伸因子Tu(EF-Tu),一种负责校对氨酰-tRNA的蛋白质,它通过限制ncAA-tRNA向核糖体的递送,极大地限制了ncAA的应用范围。研究人员通过对关键ncAAs设计与ncAA兼容的EF-Tus来应对这一问题。然而,这种方法未能解决EF-Tu抑制ncAA高效掺入的程度问题。在此,我们展示了一种利用计算分析来拓宽EF-Tu底物特异性的替代策略。对EF-Tu和自然进化出的特殊延伸因子SelB进行进化分析,为通过靶向与这两个古老旁系同源物之间功能差异相关的氨基酸残基来改造EF-Tu提供了机会。利用琥珀密码子抑制并结合质谱分析,我们鉴定出了两种具有非天然底物兼容性的EF-Tu变体。此外,我们提供的数据表明,这些EF-Tu变体有助于宿主生物体的适应性,与天然和工程化翻译机制的组分协同发挥作用。这些结果证明了我们计算方法的可行性,并支持了关于分子进化的相应假设。这项工作推动了增强多特异性EF-Tu行为作为扩大ncAA应用范围的可行策略,并且补充了正在进行的强调采用综合方法进一步扩展遗传密码重要性的研究。