Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
Department of Ecological Sciences, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
ISME J. 2021 Feb;15(2):435-449. doi: 10.1038/s41396-020-00786-w. Epub 2020 Sep 28.
Arbuscular mycorrhizal fungi function as conduits for underground nutrient transport. While the fungal partner is dependent on the plant host for its carbon (C) needs, the amount of nutrients that the fungus allocates to hosts can vary with context. Because fungal allocation patterns to hosts can change over time, they have historically been difficult to quantify accurately. We developed a technique to tag rock phosphorus (P) apatite with fluorescent quantum-dot (QD) nanoparticles of three different colors, allowing us to study nutrient transfer in an in vitro fungal network formed between two host roots of different ages and different P demands over a 3-week period. Using confocal microscopy and raster image correlation spectroscopy, we could distinguish between P transfer from the hyphae to the roots and P retention in the hyphae. By tracking QD-apatite from its point of origin, we found that the P demands of the younger root influenced both: (1) how the fungus distributed nutrients among different root hosts and (2) the storage patterns in the fungus itself. Our work highlights that fungal trade strategies are highly dynamic over time to local conditions, and stresses the need for precise measurements of symbiotic nutrient transfer across both space and time.
丛枝菌根真菌作为地下养分运输的导管发挥作用。虽然真菌伙伴依赖于植物宿主来满足其碳 (C) 的需求,但真菌分配给宿主的养分数量可能因环境而异。由于真菌对宿主的分配模式会随时间变化,因此历史上很难准确地量化它们。我们开发了一种技术,用三种不同颜色的荧光量子点 (QD) 纳米颗粒标记岩石磷 (P) 磷灰石,使我们能够在体外真菌网络中研究养分转移,该网络由两个具有不同年龄和不同 P 需求的宿主根在 3 周内形成。使用共聚焦显微镜和光栅图像相关光谱学,我们可以区分菌丝向根系转移的 P 和菌丝中保留的 P。通过跟踪 QD-磷灰石的起源点,我们发现较年轻根系的 P 需求影响了以下两个方面:(1) 真菌如何在不同的根宿主之间分配养分;(2) 真菌自身的储存模式。我们的工作强调了真菌贸易策略随着时间的推移对局部条件具有高度动态性,并强调了需要对跨空间和时间的共生养分转移进行精确测量。