Goulas Alexandros, Stiers Peter, Hutchison R Matthew, Everling Stefan, Petrides Michael, Margulies Daniel S
Max Planck Research Group Neuroanatomy and Connectivity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany;
Faculty of Psychology and Neuroscience, Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, The Netherlands.
J Neurophysiol. 2017 Mar 1;117(3):1084-1099. doi: 10.1152/jn.00486.2016. Epub 2016 Dec 21.
Investigations of the cellular and connectional organization of the lateral frontal cortex (LFC) of the macaque monkey provide indispensable knowledge for generating hypotheses about the human LFC. However, despite numerous investigations, there are still debates on the organization of this brain region. In vivo neuroimaging techniques such as resting-state functional magnetic resonance imaging (fMRI) can be used to define the functional circuitry of brain areas, producing results largely consistent with gold-standard invasive tract-tracing techniques and offering the opportunity for cross-species comparisons within the same modality. Our results using resting-state fMRI from macaque monkeys to uncover the intrinsic functional architecture of the LFC corroborate previous findings and inform current debates. Specifically, within the dorsal LFC, we show that ) the region along the midline and anterior to the superior arcuate sulcus is divided in two areas separated by the posterior supraprincipal dimple, ) the cytoarchitectonically defined area 6DC/F2 contains two connectional divisions, and ) a distinct area occupies the cortex around the spur of the arcuate sulcus, updating what was previously proposed to be the border between dorsal and ventral motor/premotor areas. Within the ventral LFC, the derived parcellation clearly suggests the presence of distinct areas: ) an area with a somatomotor/orofacial connectional signature (putative area 44), ) an area with an oculomotor connectional signature (putative frontal eye fields), and ) premotor areas possibly hosting laryngeal and arm representations. Our results illustrate in detail the intrinsic functional architecture of the macaque LFC, thus providing valuable evidence for debates on its organization. Resting-state functional MRI is used as a complementary method to invasive techniques to inform current debates on the organization of the macaque lateral frontal cortex. Given that the macaque cortex serves as a model for the human cortex, our results help generate more fine-tuned hypothesis for the organization of the human lateral frontal cortex.
对猕猴外侧额叶皮质(LFC)的细胞和连接组织进行研究,为提出关于人类LFC的假设提供了不可或缺的知识。然而,尽管进行了大量研究,关于这个脑区的组织仍存在争议。诸如静息态功能磁共振成像(fMRI)等体内神经成像技术可用于定义脑区的功能回路,其产生的结果在很大程度上与金标准的侵入性示踪技术一致,并为同一模式下的跨物种比较提供了机会。我们使用猕猴静息态fMRI来揭示LFC内在功能结构的结果证实了先前的发现,并为当前的争论提供了信息。具体而言,在背侧LFC内,我们发现:)沿中线且位于上弓形沟前方的区域被后上中央凹分为两个区域;)细胞构筑学定义的6DC/F2区包含两个连接分区;)一个独特的区域占据弓形沟根部周围的皮质,更新了先前提出的背侧和腹侧运动/运动前区之间的边界。在腹侧LFC内,得出的分区清楚地表明存在不同的区域:)一个具有躯体运动/口面部连接特征的区域(假定的44区);)一个具有动眼神经连接特征的区域(假定的额眼区);)可能包含喉部和手臂表征的运动前区。我们的结果详细说明了猕猴LFC的内在功能结构,从而为关于其组织的争论提供了有价值的证据。静息态功能磁共振成像被用作侵入性技术的补充方法,为当前关于猕猴外侧额叶皮质组织的争论提供信息。鉴于猕猴皮质可作为人类皮质的模型,我们的结果有助于为人类外侧额叶皮质的组织生成更精细的假设。