Suppr超能文献

模拟声带接触过程中的粘性耗散:组织粘度和厚度对水合作用的影响

Modeling viscous dissipation during vocal fold contact: the influence of tissue viscosity and thickness with implications for hydration.

作者信息

Erath Byron D, Zañartu Matías, Peterson Sean D

机构信息

Department of Mechanical and Aeronautical Engineering, Clarkson University, Potsdam, NY, 13699, USA.

Department of Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso, Chile.

出版信息

Biomech Model Mechanobiol. 2017 Jun;16(3):947-960. doi: 10.1007/s10237-016-0863-5. Epub 2016 Dec 21.

Abstract

The mechanics of vocal fold contact during phonation is known to play a crucial role in both normal and pathological speech production, though the underlying physics is not well understood. Herein, a viscoelastic model of the stresses during vocal fold contact is developed. This model assumes the cover to be a poroelastic structure wherein interstitial fluid translocates in response to mechanical squeezing. The maximum interstitial fluid pressure is found to generally increase with decreasing viscous dissipation and/or decreasing tissue elasticity. A global minimum in the total contact stress, comprising interstitial fluid pressure and elastic stress in the tissue, is observed over the studied dimensionless parameter range. Interestingly, physiologically reasonable estimates for the governing parameters fall within this global minimum region. The model is validated against prior experimental and computational work, wherein the predicted contact stress magnitude and impact duration agree well with published results. Lastly, observations of the potential relationship between vocal fold hydration and increased risk of tissue damage are discussed based upon model predictions of stress as functions of cover layer thickness and viscosity.

摘要

尽管发声时声带接触的潜在物理原理尚未完全清楚,但已知其力学原理在正常和病理性语音产生中都起着关键作用。在此,建立了一个声带接触时应力的粘弹性模型。该模型假设覆盖层为多孔弹性结构,其中间隙流体响应机械挤压而发生迁移。发现最大间隙流体压力通常随着粘性耗散的降低和/或组织弹性的降低而增加。在所研究的无量纲参数范围内,观察到总接触应力(包括间隙流体压力和组织中的弹性应力)存在全局最小值。有趣的是,控制参数的生理合理估计值落在这个全局最小区域内。该模型通过先前的实验和计算工作进行了验证,其中预测的接触应力大小和作用持续时间与已发表的结果吻合良好。最后,基于应力作为覆盖层厚度和粘度函数的模型预测,讨论了声带水合作用与组织损伤风险增加之间潜在关系的观察结果。

相似文献

1
Modeling viscous dissipation during vocal fold contact: the influence of tissue viscosity and thickness with implications for hydration.
Biomech Model Mechanobiol. 2017 Jun;16(3):947-960. doi: 10.1007/s10237-016-0863-5. Epub 2016 Dec 21.
3
Experimental studies on the viscoelasticity of the vocal fold.
Acta Otolaryngol. 1992;112(1):151-9. doi: 10.3109/00016489209100797.
4
Biomechanics of fundamental frequency regulation: Constitutive modeling of the vocal fold lamina propria.
Logoped Phoniatr Vocol. 2009 Dec;34(4):181-9. doi: 10.3109/14015430902913501.
5
Vocal fold contact pressure in a three-dimensional body-cover phonation model.
J Acoust Soc Am. 2019 Jul;146(1):256. doi: 10.1121/1.5116138.
7
8
A computational study of systemic hydration in vocal fold collision.
Comput Methods Biomech Biomed Engin. 2014;17(16):1835-52. doi: 10.1080/10255842.2013.772591. Epub 2013 Mar 26.
9
Viscoelastic properties of human aryepiglottic fold and ventricular fold tissues at phonatory frequencies.
Laryngoscope. 2018 Aug;128(8):E296-E301. doi: 10.1002/lary.27049. Epub 2017 Dec 15.
10
Effects of poroelastic coefficients on normal vibration modes in vocal-fold tissues.
J Acoust Soc Am. 2011 Feb;129(2):934-43. doi: 10.1121/1.3533692.

引用本文的文献

1
2
The effect of swelling on vocal fold kinematics and dynamics.
Biomech Model Mechanobiol. 2023 Dec;22(6):1873-1889. doi: 10.1007/s10237-023-01740-3. Epub 2023 Jul 10.
3
Collision Pressure and Dissipated Power Dose in a Self-Oscillating Silicone Vocal Fold Model With a Posterior Glottal Opening.
J Speech Lang Hear Res. 2022 Aug 17;65(8):2829-2845. doi: 10.1044/2022_JSLHR-21-00471. Epub 2022 Aug 1.
4
LaDIVA: A neurocomputational model providing laryngeal motor control for speech acquisition and production.
PLoS Comput Biol. 2022 Jun 23;18(6):e1010159. doi: 10.1371/journal.pcbi.1010159. eCollection 2022 Jun.
5
Estimating Vocal Fold Contact Pressure from Raw Laryngeal High-Speed Videoendoscopy Using a Hertz Contact Model.
Appl Sci (Basel). 2019 Jun 1;9(11). doi: 10.3390/app9112384. Epub 2019 Jun 11.

本文引用的文献

1
Using Ambulatory Voice Monitoring to Investigate Common Voice Disorders: Research Update.
Front Bioeng Biotechnol. 2015 Oct 16;3:155. doi: 10.3389/fbioe.2015.00155. eCollection 2015.
3
The role of glottal surface adhesion on vocal folds biomechanics.
Biomech Model Mechanobiol. 2015 Apr;14(2):283-95. doi: 10.1007/s10237-014-0603-7. Epub 2014 Jul 18.
4
Quantification of acute vocal fold epithelial surface damage with increasing time and magnitude doses of vibration exposure.
PLoS One. 2014 Mar 13;9(3):e91615. doi: 10.1371/journal.pone.0091615. eCollection 2014.
5
A computational study of systemic hydration in vocal fold collision.
Comput Methods Biomech Biomed Engin. 2014;17(16):1835-52. doi: 10.1080/10255842.2013.772591. Epub 2013 Mar 26.
6
Mobile voice health monitoring using a wearable accelerometer sensor and a smartphone platform.
IEEE Trans Biomed Eng. 2012 Nov;59(11):3090-6. doi: 10.1109/TBME.2012.2207896. Epub 2012 Aug 2.
7
The role of hydration in vocal fold physiology.
Curr Opin Otolaryngol Head Neck Surg. 2010 Jun;18(3):171-5. doi: 10.1097/MOO.0b013e3283393784.
8
Measurement of Young's modulus of vocal folds by indentation.
J Voice. 2011 Jan;25(1):1-7. doi: 10.1016/j.jvoice.2009.09.005. Epub 2010 Feb 19.
9
Comparison of acceleration and impact stress as possible loading factors in phonation: a computer modeling study.
Folia Phoniatr Logop. 2009;61(3):137-45. doi: 10.1159/000219949. Epub 2009 Jul 1.
10
A fluid-saturated poroelastic model of the vocal folds with hydrated tissue.
J Biomech. 2009 Apr 16;42(6):774-80. doi: 10.1016/j.jbiomech.2008.12.006. Epub 2009 Mar 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验