Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) and CIBER-BBN, Campus de la UAB, Bellaterra, 08193, Spain.
School of Physical Science and Technology, Southwest University, Chongqing, 400715, People's Republic of China.
Sci Rep. 2016 Dec 22;6:39623. doi: 10.1038/srep39623.
Since the first demonstration, the electrolyte-gated organic field-effect transistors (EGOFETs) have immediately gained much attention for the development of cutting-edge technology and they are expected to have a strong impact in the field of (bio-)sensors. However EGOFETs directly expose their active material towards the aqueous media, hence a limited library of organic semiconductors is actually suitable. By using two mostly unexplored strategies in EGOFETs such as blended materials together with a printing technique, we have successfully widened this library. Our benchmarks were 6,13-bis(triisopropylsilylethynyl)pentacene and 2,8-difluoro-5,11-bis(triethylsilylethynyl)anthradithiophene (diF-TES-ADT), which have been firstly blended with polystyrene and secondly deposited by means of the bar-assisted meniscus shearing (BAMS) technique. Our approach yielded thin films (i.e. no thicker than 30 nm) suitable for organic electronics and stable in liquid environment. Up to date, these EGOFETs show unprecedented performances. Furthermore, an extremely harsh environment, like NaCl 1M, has been used in order to test the limit of operability of these electronic devices. Albeit an electrical worsening is observed, our devices can operate under different electrical stresses within the time frame of hours up to a week. In conclusion, our approach turns out to be a powerful tool for the EGOFET manufacturing.
自首次演示以来,电解质门控有机场效应晶体管(EGOFET)因其在尖端技术发展方面的潜力而立即受到广泛关注,预计在(生物)传感器领域将产生重大影响。然而,EGOFET 直接将其活性材料暴露于水介质中,因此实际上只有有限的有机半导体库是适用的。通过在 EGOFET 中使用两种大多未被探索的策略,即混合材料和印刷技术,我们成功地扩大了这个库。我们的基准是 6,13-双(三异丙基硅基乙炔基)戊二烯和 2,8-二氟-5,11-双(三乙基硅基乙炔基)蒽二噻吩(diF-TES-ADT),它们首先与聚苯乙烯混合,其次通过棒辅助弯月面剪切(BAMS)技术沉积。我们的方法得到了适合有机电子的薄膜(即不超过 30nm 厚),并且在液体环境中稳定。迄今为止,这些 EGOFET 显示出了前所未有的性能。此外,我们还在极其恶劣的环境(如 1M 的 NaCl)中测试了这些电子设备的操作极限。尽管观察到了电气恶化,但我们的设备可以在数小时到一周的时间内承受不同的电气应力。总之,我们的方法为 EGOFET 的制造提供了一种强大的工具。