Suppr超能文献

显示重复抑制和增强的脑区:137项神经影像学实验的荟萃分析。

Brain regions that show repetition suppression and enhancement: A meta-analysis of 137 neuroimaging experiments.

作者信息

Kim Hongkeun

机构信息

Department of Rehabilitation Psychology, Daegu University, 201, Daegudae-ro, Gyeongsan-si, Gyeongsangbuk-do, 38453, Republic of Korea.

出版信息

Hum Brain Mapp. 2017 Apr;38(4):1894-1913. doi: 10.1002/hbm.23492. Epub 2016 Dec 23.

Abstract

Repetition suppression and enhancement refer to the reduction and increase in the neural responses for repeated rather than novel stimuli, respectively. This study provides a meta-analysis of the effects of repetition suppression and enhancement, restricting the data used to that involving fMRI/PET, visual stimulus presentation, and healthy participants. The major findings were as follows. First, the global topography of the repetition suppression effects was strikingly similar to that of the "subsequent memory" effects, indicating that the mechanism for repetition suppression is the reduced engagement of an encoding system. The lateral frontal cortex effects involved the frontoparietal control network regions anteriorly and the dorsal attention network regions posteriorly. The left fusiform cortex effects predominantly involved the dorsal attention network regions, whereas the right fusiform cortex effects mainly involved the visual network regions. Second, the category-specific meta-analyses and their comparisons indicated that most parts of the alleged category-specific regions showed repetition suppression for more than one stimulus category. In this regard, these regions may not be "dedicated cortical modules," but are more likely parts of multiple overlapping large-scale maps of simple features. Finally, the global topography of the repetition enhancement effects was similar to that of the "retrieval success" effects, suggesting that the mechanism for repetition enhancement is voluntary or involuntary explicit retrieval during an implicit memory task. Taken together, these results clarify the network affiliations of the regions showing reliable repetition suppression and enhancement effects and contribute to the theoretical interpretations of the local and global topography of these two effects. Hum Brain Mapp 38:1894-1913, 2017. © 2017 Wiley Periodicals, Inc.

摘要

重复抑制和增强分别指的是对重复刺激而非新异刺激的神经反应的减少和增加。本研究对重复抑制和增强的效应进行了荟萃分析,将所使用的数据限制为涉及功能磁共振成像/正电子发射断层扫描、视觉刺激呈现以及健康参与者的数据。主要研究结果如下。首先,重复抑制效应的整体拓扑结构与“后续记忆”效应的拓扑结构惊人地相似,这表明重复抑制的机制是编码系统参与度的降低。额叶外侧皮质效应在前部涉及额顶叶控制网络区域,在后部涉及背侧注意网络区域。左侧梭状回皮质效应主要涉及背侧注意网络区域,而右侧梭状回皮质效应主要涉及视觉网络区域。其次,特定类别荟萃分析及其比较表明,所谓的特定类别区域的大部分对不止一种刺激类别表现出重复抑制。在这方面,这些区域可能不是“专用皮质模块”,而更有可能是简单特征的多个重叠大规模图谱的一部分。最后,重复增强效应的整体拓扑结构与“检索成功”效应的拓扑结构相似,这表明重复增强的机制是在隐性记忆任务期间的自愿或非自愿显性检索。综上所述,这些结果阐明了显示可靠重复抑制和增强效应的区域的网络归属,并有助于对这两种效应的局部和整体拓扑结构进行理论解释。《人类大脑图谱》38:1894 - 1913, 2017。© 2017威利期刊公司。

相似文献

1
Brain regions that show repetition suppression and enhancement: A meta-analysis of 137 neuroimaging experiments.
Hum Brain Mapp. 2017 Apr;38(4):1894-1913. doi: 10.1002/hbm.23492. Epub 2016 Dec 23.
2
Repetition suppression and multi-voxel pattern similarity differentially track implicit and explicit visual memory.
J Neurosci. 2013 Sep 11;33(37):14749-57. doi: 10.1523/JNEUROSCI.4889-12.2013.
3
Category-specific organization of prefrontal response-facilitation during priming.
Neuropsychologia. 2006;44(10):1765-76. doi: 10.1016/j.neuropsychologia.2006.03.019. Epub 2006 May 15.
5
Involvement of the dorsal and ventral attention networks in oddball stimulus processing: a meta-analysis.
Hum Brain Mapp. 2014 May;35(5):2265-84. doi: 10.1002/hbm.22326. Epub 2013 Jul 30.
6
Neural activation and memory for natural scenes: Explicit and spontaneous retrieval.
Psychophysiology. 2018 Oct;55(10):e13197. doi: 10.1111/psyp.13197. Epub 2018 May 6.
7
Face repetition effects in implicit and explicit memory tests as measured by fMRI.
Cereb Cortex. 2002 Feb;12(2):178-86. doi: 10.1093/cercor/12.2.178.
9
Global familiarity of visual stimuli affects repetition-related neural plasticity but not repetition priming.
Neuroimage. 2008 Jan 1;39(1):515-26. doi: 10.1016/j.neuroimage.2007.08.011. Epub 2007 Aug 23.
10
Trial history effects in the ventral attentional network.
J Cogn Neurosci. 2014 Dec;26(12):2789-97. doi: 10.1162/jocn_a_00678. Epub 2014 Jun 24.

引用本文的文献

3
Peering into the future: Eye movements predict neural repetition effects during episodic simulation.
Neuropsychologia. 2024 May 3;197:108852. doi: 10.1016/j.neuropsychologia.2024.108852. Epub 2024 Mar 18.
4
Temporal expectations mediated the repetition effect in a sequence in two ways.
Cogn Process. 2023 Nov;24(4):463-469. doi: 10.1007/s10339-023-01141-5. Epub 2023 May 31.
5
A new perspective on the role of the frontoparietal regions in Stroop-like conflicts.
Hum Brain Mapp. 2023 Aug 1;44(11):4310-4320. doi: 10.1002/hbm.26347. Epub 2023 May 25.
6
A comment on the connection between BA10 and episodic memory.
Front Behav Neurosci. 2023 May 5;17:1105168. doi: 10.3389/fnbeh.2023.1105168. eCollection 2023.
7
Emotional Memory and Amygdala Activation.
Front Behav Neurosci. 2022 Jun 13;16:896285. doi: 10.3389/fnbeh.2022.896285. eCollection 2022.
8
Temporally and functionally distinct large-scale brain network dynamics supporting task switching.
Neuroimage. 2022 Jul 1;254:119126. doi: 10.1016/j.neuroimage.2022.119126. Epub 2022 Mar 22.

本文引用的文献

1
Functional organization of the fusiform gyrus revealed with connectivity profiles.
Hum Brain Mapp. 2016 Aug;37(8):3003-16. doi: 10.1002/hbm.23222. Epub 2016 May 2.
2
Neurochemical modulation of repetition suppression and novelty signals in the human brain.
Cortex. 2016 Jul;80:161-73. doi: 10.1016/j.cortex.2015.10.013. Epub 2015 Nov 4.
3
Repetition suppression to faces in the fusiform face area: A personal and dynamic journey.
Cortex. 2016 Jul;80:174-84. doi: 10.1016/j.cortex.2015.09.012. Epub 2015 Oct 31.
4
Default network activation during episodic and semantic memory retrieval: A selective meta-analytic comparison.
Neuropsychologia. 2016 Jan 8;80:35-46. doi: 10.1016/j.neuropsychologia.2015.11.006. Epub 2015 Nov 10.
5
Two New Cytoarchitectonic Areas on the Human Mid-Fusiform Gyrus.
Cereb Cortex. 2017 Jan 1;27(1):373-385. doi: 10.1093/cercor/bhv225.
6
On the existence of a generalized non-specific task-dependent network.
Front Hum Neurosci. 2015 Aug 6;9:430. doi: 10.3389/fnhum.2015.00430. eCollection 2015.
7
Specifying the core network supporting episodic simulation and episodic memory by activation likelihood estimation.
Neuropsychologia. 2015 Aug;75:450-7. doi: 10.1016/j.neuropsychologia.2015.06.034. Epub 2015 Jul 2.
8
Associative Processing Is Inherent in Scene Perception.
PLoS One. 2015 Jun 12;10(6):e0128840. doi: 10.1371/journal.pone.0128840. eCollection 2015.
9
Neural mechanisms of the spacing effect in episodic memory: A parallel EEG and fMRI study.
Cortex. 2015 Aug;69:76-92. doi: 10.1016/j.cortex.2015.04.002. Epub 2015 Apr 23.
10
Co-Activation-Based Parcellation of the Lateral Prefrontal Cortex Delineates the Inferior Frontal Junction Area.
Cereb Cortex. 2016 May;26(5):2225-2241. doi: 10.1093/cercor/bhv073. Epub 2015 Apr 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验