Adams William C, Chen Yen-Hua, Kratchmarov Radomir, Yen Bonnie, Nish Simone A, Lin Wen-Hsuan W, Rothman Nyanza J, Luchsinger Larry L, Klein Ulf, Busslinger Meinrad, Rathmell Jeffrey C, Snoeck Hans-Willem, Reiner Steven L
Department of Microbiology and Immunology and Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA.
Department of Medicine and Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA.
Cell Rep. 2016 Dec 20;17(12):3142-3152. doi: 10.1016/j.celrep.2016.11.065.
Regeneration requires related cells to diverge in fate. We show that activated lymphocytes yield sibling cells with unequal elimination of aged mitochondria. Disparate mitochondrial clearance impacts cell fate and reflects larger constellations of opposing metabolic states. Differentiation driven by an anabolic constellation of PI3K/mTOR activation, aerobic glycolysis, inhibited autophagy, mitochondrial stasis, and ROS production is balanced with self-renewal maintained by a catabolic constellation of AMPK activation, mitochondrial elimination, oxidative metabolism, and maintenance of FoxO1 activity. Perturbations up and down the metabolic pathways shift the balance of nutritive constellations and cell fate owing to self-reinforcement and reciprocal inhibition between anabolism and catabolism. Cell fate and metabolic state are linked by transcriptional regulators, such as IRF4 and FoxO1, with dual roles in lineage and metabolic choice. Instructing some cells to utilize nutrients for anabolism and differentiation while other cells catabolically self-digest and self-renew may enable growth and repair in metazoa.
再生需要相关细胞在命运上产生分化。我们发现,活化的淋巴细胞会产生具有不等量衰老线粒体清除的同胞细胞。不同的线粒体清除情况会影响细胞命运,并反映出更大的相反代谢状态组合。由PI3K/mTOR激活、有氧糖酵解、自噬抑制、线粒体停滞和活性氧产生的合成代谢组合驱动的分化,与由AMPK激活、线粒体清除、氧化代谢和FoxO1活性维持的分解代谢组合所维持的自我更新相平衡。由于合成代谢和分解代谢之间的自我强化和相互抑制,代谢途径上下游的扰动会改变营养组合和细胞命运的平衡。细胞命运和代谢状态由转录调节因子如IRF4和FoxO1联系起来,它们在谱系和代谢选择中具有双重作用。指导一些细胞利用营养物质进行合成代谢和分化,而其他细胞进行分解代谢的自我消化和自我更新,可能使后生动物实现生长和修复。