Suppr超能文献

多元迷你面试中申请者社会人口学特征的影响

Impact of sociodemographic characteristics of applicants in multiple mini-interviews.

作者信息

Leduc Jean-Michel, Rioux Richard, Gagnon Robert, Bourdy Christian, Dennis Ashley

机构信息

a Division of Medical Microbiology and Infectious Diseases , Hôpital du Sacré-Coeur de Montréal , Montréal , Canada.

b Health and Society Institute, Université du Québec à Montréal , Montréal , Canada.

出版信息

Med Teach. 2017 Mar;39(3):285-294. doi: 10.1080/0142159X.2017.1270431. Epub 2016 Dec 26.

Abstract

BACKGROUND

Multiple mini-interviews (MMI) are commonly used for medical school admission. This study aimed to assess if sociodemographic characteristics are associated with MMI performance, and how they may act as barriers or enablers to communication in MMI.

METHODS

This mixed-method study combined data from a sociodemographic questionnaire, MMI scores, semi-structured interviews and focus groups with applicants and assessors. Quantitative and qualitative data were analyzed using multiple linear regression and a thematic framework analysis.

RESULTS

1099 applicants responded to the questionnaire. A regression model (R=0.086) demonstrated that being age 25-29 (β = 0.11, p = 0.001), female and a French-speaker (β = 0.22, p = 0.003) were associated with better MMI scores. Having an Asian-born parent was associated with a lower score (β = -0.12, p < 0.001). Candidates reporting a higher family income had higher MMI scores. In the qualitative data, participants discussed how maturity and financial support improved life experiences, how language could act as a barrier, and how ethnocultural differences could lead to misunderstandings.

CONCLUSION

Age, gender, ethnicity, socioeconomic status and language seem to be associated with applicants' MMI scores because of perceived differences in communications skills and life experiences. Monitoring this association may provide guidance to improve fairness of MMI stations.

摘要

背景

多重迷你面试(MMI)常用于医学院招生。本研究旨在评估社会人口学特征是否与MMI表现相关,以及它们如何可能成为MMI沟通中的障碍或促进因素。

方法

这项混合方法研究结合了来自社会人口学问卷、MMI分数、半结构化访谈以及与申请者和评估者的焦点小组的数据。使用多元线性回归和主题框架分析对定量和定性数据进行分析。

结果

1099名申请者回复了问卷。一个回归模型(R = 0.086)表明,年龄在25 - 29岁之间(β = 0.11,p = 0.001)、女性且说法语(β = 0.22,p = 0.003)与更好的MMI分数相关。有一位在亚洲出生的父母与较低分数相关(β = -0.12,p < 0.001)。报告家庭收入较高的考生MMI分数更高。在定性数据中,参与者讨论了成熟度和经济支持如何改善生活经历、语言如何可能成为障碍以及种族文化差异如何可能导致误解。

结论

年龄、性别、种族、社会经济地位和语言似乎与申请者的MMI分数相关,原因在于沟通技巧和生活经历方面存在可感知的差异。监测这种关联可能为提高MMI环节的公平性提供指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验