Suppr超能文献

一种用于移动或可穿戴设备的节点传感器数据分析的深度学习方法。

A Deep Learning Approach to on-Node Sensor Data Analytics for Mobile or Wearable Devices.

作者信息

Ravi Daniele, Wong Charence, Lo Benny, Yang Guang-Zhong

出版信息

IEEE J Biomed Health Inform. 2017 Jan;21(1):56-64. doi: 10.1109/JBHI.2016.2633287. Epub 2016 Dec 23.

Abstract

The increasing popularity of wearable devices in recent years means that a diverse range of physiological and functional data can now be captured continuously for applications in sports, wellbeing, and healthcare. This wealth of information requires efficient methods of classification and analysis where deep learning is a promising technique for large-scale data analytics. While deep learning has been successful in implementations that utilize high-performance computing platforms, its use on low-power wearable devices is limited by resource constraints. In this paper, we propose a deep learning methodology, which combines features learned from inertial sensor data together with complementary information from a set of shallow features to enable accurate and real-time activity classification. The design of this combined method aims to overcome some of the limitations present in a typical deep learning framework where on-node computation is required. To optimize the proposed method for real-time on-node computation, spectral domain preprocessing is used before the data are passed onto the deep learning framework. The classification accuracy of our proposed deep learning approach is evaluated against state-of-the-art methods using both laboratory and real world activity datasets. Our results show the validity of the approach on different human activity datasets, outperforming other methods, including the two methods used within our combined pipeline. We also demonstrate that the computation times for the proposed method are consistent with the constraints of real-time on-node processing on smartphones and a wearable sensor platform.

摘要

近年来,可穿戴设备越来越受欢迎,这意味着现在可以连续获取各种生理和功能数据,用于体育、健康和医疗保健领域。这些丰富的信息需要高效的分类和分析方法,而深度学习是大规模数据分析的一种很有前景的技术。虽然深度学习在利用高性能计算平台的实现中取得了成功,但其在低功耗可穿戴设备上的应用受到资源限制。在本文中,我们提出了一种深度学习方法,该方法将从惯性传感器数据中学习到的特征与一组浅层特征的补充信息相结合,以实现准确的实时活动分类。这种组合方法的设计旨在克服典型深度学习框架中存在的一些限制,在这种框架中需要进行节点上的计算。为了针对实时节点上的计算优化所提出的方法,在将数据传递到深度学习框架之前使用频谱域预处理。我们使用实验室和现实世界活动数据集,将所提出的深度学习方法的分类准确率与现有最先进的方法进行了比较。我们的结果表明了该方法在不同人类活动数据集上的有效性,优于其他方法,包括我们组合流程中使用的两种方法。我们还证明了所提出方法的计算时间与智能手机和可穿戴传感器平台上实时节点处理的限制是一致的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验