Suppr超能文献

基于深度学习的人体活动识别的实证研究与改进。

Empirical Study and Improvement on Deep Transfer Learning for Human Activity Recognition.

机构信息

Harbin Institute of Technology, Harbin 15000, China.

出版信息

Sensors (Basel). 2018 Dec 24;19(1):57. doi: 10.3390/s19010057.

Abstract

Human activity recognition (HAR) based on sensor data is a significant problem in pervasive computing. In recent years, deep learning has become the dominating approach in this field, due to its high accuracy. However, it is difficult to make accurate identification for the activities of one individual using a model trained on data from other users. The decline on the accuracy of recognition restricts activity recognition in practice. At present, there is little research on the transferring of deep learning model in this field. This is the first time as we known, an empirical study was carried out on deep transfer learning between users with unlabeled data of target. We compared several widely-used algorithms and found that Maximum Mean Discrepancy (MMD) method is most suitable for HAR. We studied the distribution of features generated from sensor data. We improved the existing method from the aspect of features distribution with center loss and get better results. The observations and insights in this study have deepened the understanding of transfer learning in the activity recognition field and provided guidance for further research.

摘要

基于传感器数据的人体活动识别(HAR)是普适计算中的一个重要问题。近年来,由于深度学习的高精度,它已成为该领域的主导方法。然而,使用从其他用户的数据训练的模型来准确识别一个人的活动是很困难的。识别精度的下降限制了实际中的活动识别。目前,在这个领域中对深度学习模型的转移研究很少。据我们所知,这是第一次对目标用户的未标记数据进行用户间的深度迁移学习进行实证研究。我们比较了几种广泛使用的算法,发现最大均值差异(MMD)方法最适合 HAR。我们研究了从传感器数据生成的特征的分布。我们从特征分布的角度改进了现有的方法,通过中心损失得到了更好的结果。本研究中的观察和见解加深了对活动识别领域中迁移学习的理解,并为进一步的研究提供了指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3102/6339185/dcd28adfa431/sensors-19-00057-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验