Suppr超能文献

相同还是不同?基于相似性的模式匹配决策的神经回路机制。

Same or different? A neural circuit mechanism of similarity-based pattern match decision making.

机构信息

Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, USA.

出版信息

J Neurosci. 2011 May 11;31(19):6982-96. doi: 10.1523/JNEUROSCI.6150-10.2011.

Abstract

The ability to judge whether sensory stimuli match an internally represented pattern is central to many brain functions. To elucidate the underlying mechanism, we developed a neural circuit model for match/nonmatch decision making. At the core of this model is a "comparison circuit" consisting of two distinct neural populations: match enhancement cells show higher firing response for a match than a nonmatch to the target pattern, and match suppression cells exhibit the opposite trend. We propose that these two neural pools emerge from inhibition-dominated recurrent dynamics and heterogeneous top-down excitation from a working memory circuit. A downstream system learns, through plastic synapses, to extract the necessary information to make match/nonmatch decisions. The model accounts for key physiological observations from behaving monkeys in delayed match-to-sample experiments, including tasks that require more than simple feature match (e.g., when BB in ABBA sequence must be ignored). A testable prediction is that magnitudes of match enhancement and suppression neural signals are parametrically tuned to the similarity between compared patterns. Furthermore, the same neural signals from the comparison circuit can be used differently in the decision process for different stimulus statistics or tasks; reward-dependent synaptic plasticity enables decision neurons to flexibly adjust the readout scheme to task demands, whereby the most informative neural signals have the highest impact on the decision.

摘要

判断感觉刺激是否与内部表示的模式匹配是许多大脑功能的核心。为了阐明潜在的机制,我们开发了一种用于匹配/不匹配决策的神经回路模型。该模型的核心是一个“比较电路”,由两个不同的神经元群体组成:匹配增强细胞对匹配目标模式的反应比不匹配的反应更高,而匹配抑制细胞则表现出相反的趋势。我们提出,这两个神经池源自受抑制主导的循环动力学和来自工作记忆电路的异质自上而下的兴奋。下游系统通过可塑突触学习提取做出匹配/不匹配决策所需的信息。该模型解释了行为猴子在延迟匹配样本实验中的关键生理观察结果,包括需要比简单特征匹配更多的任务(例如,在 ABBA 序列中 BB 必须忽略)。一个可测试的预测是,匹配增强和抑制神经信号的幅度与比较模式之间的相似性呈参数化调整。此外,来自比较电路的相同神经信号可以在不同的刺激统计或任务的决策过程中以不同的方式使用;奖励依赖性突触可塑性使决策神经元能够灵活地根据任务需求调整读取方案,从而使最具信息量的神经信号对决策产生最大影响。

相似文献

5
Synaptic computation underlying probabilistic inference.概率推理的突触计算。
Nat Neurosci. 2010 Jan;13(1):112-9. doi: 10.1038/nn.2450. Epub 2009 Dec 13.
8
Decision making in recurrent neuronal circuits.循环神经元回路中的决策制定
Neuron. 2008 Oct 23;60(2):215-34. doi: 10.1016/j.neuron.2008.09.034.

引用本文的文献

7
A unifying perspective on neural manifolds and circuits for cognition.对认知的神经流形和回路的统一观点。
Nat Rev Neurosci. 2023 Jun;24(6):363-377. doi: 10.1038/s41583-023-00693-x. Epub 2023 Apr 13.
8
Flexible integration of continuous sensory evidence in perceptual estimation tasks.在感知估计任务中灵活整合连续的感觉证据。
Proc Natl Acad Sci U S A. 2022 Nov 8;119(45):e2214441119. doi: 10.1073/pnas.2214441119. Epub 2022 Nov 2.
9
The neural bases for timing of durations.持续时间计时的神经基础。
Nat Rev Neurosci. 2022 Nov;23(11):646-665. doi: 10.1038/s41583-022-00623-3. Epub 2022 Sep 12.

本文引用的文献

3
Reward-modulated Hebbian learning of decision making.奖励调节的决策赫布学习。
Neural Comput. 2010 Jun;22(6):1399-444. doi: 10.1162/neco.2010.03-09-980.
4
Synaptic computation underlying probabilistic inference.概率推理的突触计算。
Nat Neurosci. 2010 Jan;13(1):112-9. doi: 10.1038/nn.2450. Epub 2009 Dec 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验