Liu Quan, Chen Yi-Feng, Fan Shou-Zen, Abbod Maysam F, Shieh Jiann-Shing
Key Laboratory of Fiber Optic Sensing Technology and Information Processing, Ministry of Education, Wuhan University of Technology, Wuhan, Hubei 430070 People's Republic of China. School of Information Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, People's Republic of China.
Physiol Meas. 2017 Feb;38(2):116-138. doi: 10.1088/1361-6579/38/2/116. Epub 2016 Dec 29.
The definition of the depth of anesthesia (DOA) is still controversial and its measurement is not completely standardized in modern anesthesia. Power spectral analysis is an important method for feature detection in electroencephalogram (EEG) signals. Several spectral parameters derived from EEG have been proposed for measuring DOA in clinical applications. In the present paper, an improved method based on phase-rectified signal averaging (PRSA) is designed to improve the predictive accuracy of relative alpha and beta power, a frequency band power ratio, total power, median frequency (MF), spectral edge frequency 95 (SEF95), and spectral entropy for assessing anesthetic drug effects. Fifty-six patients undergoing general anesthesia in an operating theatre are studied. All EEG signals are continuously recorded from the awake state to the end of the recovery state and then filtered using multivariate empirical mode decomposition (MEMD). All parameters are evaluated using the commercial bispectral index (BIS) and expert assessment of conscious level (EACL), respectively. The ability to predict DOA is estimated using the area under the receiver-operator characteristics curve (AUC). All indicators based on the improved method can clearly discriminate the conscious state from the anesthetized state after filtration (p < 0.05). A significantly larger mean AUC (p < 0.05) shows that the improved method performs better than the conventional method to measure the DOA in most circumstances. Especially for raw EEG contaminated by artifacts, when the BIS index is used to indicate the consciousness level, the improvement is 7.37% (p < 0.05), 9.04% (p < 0.05), 18.46% (p < 0.05), 27.73% (p < 0.05), 14.65% (p < 0.05), 2.52%, 5.38% and 6.24% (p < 0.05) for relative alpha and beta power, power ratio, total power, MF, SEF, RE and SE, respectively. However, when the EACL is used to indicate the consciousness level, the improvement is 3.30% (p < 0.05), 16.69% (p < 0.05), 15.08% (p < 0.05), 34.83% (p < 0.05), 27.78% (p < 0.05), 5.89% (p < 0.05), 26.05% (p < 0.05) and 23.42% (p < 0.05). Spectral parameters derived from PRSA are more useful to measure the DOA in noisy cases.
麻醉深度(DOA)的定义仍存在争议,并且在现代麻醉中其测量尚未完全标准化。功率谱分析是脑电图(EEG)信号特征检测的重要方法。已经提出了几种从脑电图导出的频谱参数用于在临床应用中测量麻醉深度。在本文中,设计了一种基于相位校正信号平均(PRSA)的改进方法,以提高相对α和β功率、频段功率比、总功率、中位数频率(MF)、频谱边缘频率95(SEF95)和频谱熵用于评估麻醉药物效果的预测准确性。对五十六名在手术室接受全身麻醉的患者进行了研究。所有脑电图信号从清醒状态到恢复状态结束进行连续记录,然后使用多变量经验模态分解(MEMD)进行滤波。所有参数分别使用商业双谱指数(BIS)和意识水平专家评估(EACL)进行评估。使用受试者工作特征曲线(AUC)下的面积来估计预测麻醉深度的能力。基于改进方法的所有指标在滤波后都能清晰地区分清醒状态和麻醉状态(p<0.05)。显著更大的平均AUC(p<0.05)表明,在大多数情况下,改进方法在测量麻醉深度方面比传统方法表现更好。特别是对于被伪迹污染的原始脑电图,当使用BIS指数来指示意识水平时,相对α和β功率、功率比、总功率、MF、SEF、RE和SE的改善分别为7.37%(p<0.05)、9.04%(p<0.05)、18.46%(p<0.05)、27.73%(p<0.05)、14.65%(p<0.05)、2.52%、5.38%和6.24%(p<0.05)。然而,当使用EACL来指示意识水平时,改善分别为3.30%(p<0.05)、16.69%(p<0.05)、15.08%(p<0.05)、34.83%(p<0.05)、27.78%(p<0.05)、5.89%(p<0.05)、26.05%(p<0.05)和23.42%(p<0.05)。从PRSA导出的频谱参数在有噪声的情况下对于测量麻醉深度更有用。