Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA.
Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA.
Biochim Biophys Acta Gen Subj. 2017 Mar;1861(3):636-643. doi: 10.1016/j.bbagen.2016.12.007. Epub 2016 Dec 28.
Carnivorous plants possess diverse sets of enzymes with novel functionalities applicable to biotechnology, proteomics, and bioanalytical research. Chitinases constitute an important class of such enzymes, with future applications including human-safe antifungal agents and pesticides. Here, we compare chitinases from the genome of the carnivorous plant Drosera capensis to those from related carnivorous plants and model organisms.
Using comparative modeling, in silico maturation, and molecular dynamics simulation, we produce models of the mature enzymes in aqueous solution. We utilize network analytic techniques to identify similarities and differences in chitinase topology.
Here, we report molecular models and functional predictions from protein structure networks for eleven new chitinases from D. capensis, including a novel class IV chitinase with two active domains. This architecture has previously been observed in microorganisms but not in plants. We use a combination of comparative and de novo structure prediction followed by molecular dynamics simulation to produce models of the mature forms of these proteins in aqueous solution. Protein structure network analysis of these and other plant chitinases reveal characteristic features of the two major chitinase families.
This work demonstrates how computational techniques can facilitate quickly moving from raw sequence data to refined structural models and comparative analysis, and to select promising candidates for subsequent biochemical characterization. This capability is increasingly important given the large and growing body of data from high-throughput genome sequencing, which makes experimental characterization of every target impractical.
肉食性植物拥有多种具有新颖功能的酶,可应用于生物技术、蛋白质组学和生物分析研究。几丁质酶是此类酶的一个重要类别,未来的应用包括对人类安全的抗真菌剂和杀虫剂。在这里,我们将比较来自肉食性植物茅膏菜的几丁质酶与相关肉食性植物和模式生物的几丁质酶。
使用比较建模、计算机成熟和分子动力学模拟,我们在水溶液中生成成熟酶的模型。我们利用网络分析技术来识别几丁质酶拓扑结构的相似性和差异。
在这里,我们报告了来自 D. capensis 的 11 种新几丁质酶的分子模型和功能预测,包括具有两个活性域的新型 IV 类几丁质酶。这种结构以前在微生物中观察到过,但在植物中没有观察到过。我们结合比较和从头结构预测,然后进行分子动力学模拟,以在水溶液中生成这些蛋白质的成熟形式的模型。对这些和其他植物几丁质酶的蛋白质结构网络分析揭示了两种主要几丁质酶家族的特征。
这项工作展示了计算技术如何能够快速从原始序列数据推进到精细的结构模型和比较分析,并选择有前途的候选物进行后续的生化特性分析。随着高通量基因组测序产生的大量且不断增长的数据,使得对每个目标进行实验特征分析变得不切实际,这种能力变得越来越重要。