Suppr超能文献

利用知识驱动的基因组相互作用进行多组学数据分析:预测卵巢癌临床结局的元维度模型

Using knowledge-driven genomic interactions for multi-omics data analysis: metadimensional models for predicting clinical outcomes in ovarian carcinoma.

作者信息

Kim Dokyoon, Li Ruowang, Lucas Anastasia, Verma Shefali S, Dudek Scott M, Ritchie Marylyn D

机构信息

Biomedical and Translational Informatics, Geisinger Health System, Danville, Pennsylvania, USA.

Center for Systems Genomics, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA.

出版信息

J Am Med Inform Assoc. 2017 May 1;24(3):577-587. doi: 10.1093/jamia/ocw165.

Abstract

It is common that cancer patients have different molecular signatures even though they have similar clinical features, such as histology, due to the heterogeneity of tumors. To overcome this variability, we previously developed a new approach incorporating prior biological knowledge that identifies knowledge-driven genomic interactions associated with outcomes of interest. However, no systematic approach has been proposed to identify interaction models between pathways based on multi-omics data. Here we have proposed such a novel methodological framework, called metadimensional knowledge-driven genomic interactions (MKGIs). To test the utility of the proposed framework, we applied it to an ovarian cancer dataset including multi-omics profiles from The Cancer Genome Atlas to predict grade, stage, and survival outcome. We found that each knowledge-driven genomic interaction model, based on different genomic datasets, contains different sets of pathway features, which suggests that each genomic data type may contribute to outcomes in ovarian cancer via a different pathway. In addition, MKGI models significantly outperformed the single knowledge-driven genomic interaction model. From the MKGI models, many interactions between pathways associated with outcomes were found, including the mitogen-activated protein kinase (MAPK) signaling pathway and the gonadotropin-releasing hormone (GnRH) signaling pathway, which are known to play important roles in cancer pathogenesis. The beauty of incorporating biological knowledge into the model based on multi-omics data is the ability to improve diagnosis and prognosis and provide better interpretability. Thus, determining variability in molecular signatures based on these interactions between pathways may lead to better diagnostic/treatment strategies for better precision medicine.

摘要

由于肿瘤的异质性,癌症患者即使具有相似的临床特征(如组织学特征),也会有不同的分子特征。为了克服这种变异性,我们之前开发了一种新方法,该方法纳入了先验生物学知识,可识别与感兴趣的结果相关的知识驱动型基因组相互作用。然而,尚未有人提出基于多组学数据来识别通路间相互作用模型的系统方法。在此,我们提出了这样一种新颖的方法框架,称为元维度知识驱动型基因组相互作用(MKGIs)。为了测试所提出框架的效用,我们将其应用于一个卵巢癌数据集,该数据集包含来自癌症基因组图谱的多组学概况,以预测分级、分期和生存结果。我们发现,基于不同基因组数据集的每个知识驱动型基因组相互作用模型都包含不同的通路特征集,这表明每种基因组数据类型可能通过不同的通路对卵巢癌的结果产生影响。此外,MKGI模型显著优于单一的知识驱动型基因组相互作用模型。从MKGI模型中,发现了许多与结果相关的通路之间的相互作用,包括丝裂原活化蛋白激酶(MAPK)信号通路和促性腺激素释放激素(GnRH)信号通路,已知它们在癌症发病机制中起重要作用。将生物学知识纳入基于多组学数据的模型的美妙之处在于能够改善诊断和预后,并提供更好的可解释性。因此,基于这些通路间相互作用来确定分子特征的变异性可能会带来更好的诊断/治疗策略,以实现更好的精准医学。

相似文献

2
Knowledge boosting: a graph-based integration approach with multi-omics data and genomic knowledge for cancer clinical outcome prediction.
J Am Med Inform Assoc. 2015 Jan;22(1):109-20. doi: 10.1136/amiajnl-2013-002481. Epub 2014 Jul 7.
3
Incorporating inter-relationships between different levels of genomic data into cancer clinical outcome prediction.
Methods. 2014 Jun 1;67(3):344-53. doi: 10.1016/j.ymeth.2014.02.003. Epub 2014 Feb 18.
4
Predicting censored survival data based on the interactions between meta-dimensional omics data in breast cancer.
J Biomed Inform. 2015 Aug;56:220-8. doi: 10.1016/j.jbi.2015.05.019. Epub 2015 Jun 3.
5
A prognostic prediction model for ovarian cancer using a cross-modal view correlation discovery network.
Math Biosci Eng. 2024 Jan;21(1):736-764. doi: 10.3934/mbe.2024031. Epub 2022 Dec 19.
6
Knowledge-driven genomic interactions: an application in ovarian cancer.
BioData Min. 2014 Sep 9;7:20. doi: 10.1186/1756-0381-7-20. eCollection 2014.
9
Integrated multi-omics analysis of ovarian cancer using variational autoencoders.
Sci Rep. 2021 Mar 18;11(1):6265. doi: 10.1038/s41598-021-85285-4.
10
A multivariate approach to the integration of multi-omics datasets.
BMC Bioinformatics. 2014 May 29;15:162. doi: 10.1186/1471-2105-15-162.

引用本文的文献

1
Combining phenotypic and genomic data to improve prediction of binary traits.
J Appl Stat. 2023 May 16;51(8):1497-1523. doi: 10.1080/02664763.2023.2208773. eCollection 2024.
3
Radiogenomics study to predict the nuclear grade of renal clear cell carcinoma.
Eur J Radiol Open. 2023 Jan 28;10:100476. doi: 10.1016/j.ejro.2023.100476. eCollection 2023.
4
Artificial intelligence in cancer target identification and drug discovery.
Signal Transduct Target Ther. 2022 May 10;7(1):156. doi: 10.1038/s41392-022-00994-0.
5
Epigenetic interplay between methylation and miRNA in bladder cancer: focus on isoform expression.
BMC Genomics. 2021 Oct 21;22(Suppl 3):754. doi: 10.1186/s12864-021-08052-9.
6
Improving the Prognosis of Colon Cancer through Knowledge-Based Clinical-Molecular Integrated Analysis.
Biomed Res Int. 2021 Apr 7;2021:9987819. doi: 10.1155/2021/9987819. eCollection 2021.
9
Exploiting Interdata Relationships in Next-generation Proteomics Analysis.
Mol Cell Proteomics. 2019 Aug 9;18(8 suppl 1):S5-S14. doi: 10.1074/mcp.MR118.001246. Epub 2019 May 24.
10
The growing role of precision and personalized medicine for cancer treatment.
Technology (Singap World Sci). 2018 Sep-Dec;6(3-4):79-100. doi: 10.1142/S2339547818300020. Epub 2019 Jan 11.

本文引用的文献

3
Integrating multidimensional omics data for cancer outcome.
Biostatistics. 2016 Oct;17(4):605-18. doi: 10.1093/biostatistics/kxw010. Epub 2016 Mar 14.
4
Predicting censored survival data based on the interactions between meta-dimensional omics data in breast cancer.
J Biomed Inform. 2015 Aug;56:220-8. doi: 10.1016/j.jbi.2015.05.019. Epub 2015 Jun 3.
5
A new initiative on precision medicine.
N Engl J Med. 2015 Feb 26;372(9):793-5. doi: 10.1056/NEJMp1500523. Epub 2015 Jan 30.
7
Methods of integrating data to uncover genotype-phenotype interactions.
Nat Rev Genet. 2015 Feb;16(2):85-97. doi: 10.1038/nrg3868. Epub 2015 Jan 13.
8
Knowledge-driven genomic interactions: an application in ovarian cancer.
BioData Min. 2014 Sep 9;7:20. doi: 10.1186/1756-0381-7-20. eCollection 2014.
9
Knowledge boosting: a graph-based integration approach with multi-omics data and genomic knowledge for cancer clinical outcome prediction.
J Am Med Inform Assoc. 2015 Jan;22(1):109-20. doi: 10.1136/amiajnl-2013-002481. Epub 2014 Jul 7.
10
Incorporating inter-relationships between different levels of genomic data into cancer clinical outcome prediction.
Methods. 2014 Jun 1;67(3):344-53. doi: 10.1016/j.ymeth.2014.02.003. Epub 2014 Feb 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验