Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY.
Department of Medicine, Yong Loo Lin School of Medicine, National University Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore.
Mol Cell Proteomics. 2019 Aug 9;18(8 suppl 1):S5-S14. doi: 10.1074/mcp.MR118.001246. Epub 2019 May 24.
Mass spectrometry based proteomics and other technologies have matured to enable routine quantitative, system-wide analysis of concentrations, modifications, and interactions of proteins, mRNAs, and other molecules. These studies have allowed us to move toward a new field concerned with mining information from the combination of these orthogonal data sets, perhaps called "integromics." We highlight examples of recent studies and tools that aim at relating proteomic information to mRNAs, genetic associations, and changes in small molecules and lipids. We argue that productive data integration differs from parallel acquisition and interpretation and should move toward quantitative modeling of the relationships between the data. These relationships might be expressed by temporal information retrieved from time series experiments, rate equations to model synthesis and degradation, or networks of causal, evolutionary, physical, and other interactions. We outline steps and considerations toward such integromic studies to exploit the synergy between data sets.
基于质谱的蛋白质组学和其他技术已经成熟,可以常规地进行定量、系统地分析蛋白质、mRNA 和其他分子的浓度、修饰和相互作用。这些研究使我们能够朝着一个新的领域发展,这个领域涉及从这些正交数据集的组合中挖掘信息,也许可以称之为“整合组学”。我们强调了一些最近的研究和工具的例子,这些研究和工具旨在将蛋白质组学信息与 mRNAs、遗传关联以及小分子和脂质的变化联系起来。我们认为,有成效的数据整合与平行采集和解释不同,应该朝着数据之间关系的定量建模方向发展。这些关系可以通过从时间序列实验中检索的时间信息、用于模拟合成和降解的速率方程,或者因果关系、进化、物理和其他相互作用的网络来表达。我们概述了朝着这种整合组学研究发展的步骤和考虑因素,以利用数据集之间的协同作用。