Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg 85764, Germany.
Center for Mathematics, Technische Universität München, Garching 85748, Germany.
Bioinformatics. 2017 Apr 1;33(7):1049-1056. doi: 10.1093/bioinformatics/btw764.
Ordinary differential equation (ODE) models are frequently used to describe the dynamic behaviour of biochemical processes. Such ODE models are often extended by events to describe the effect of fast latent processes on the process dynamics. To exploit the predictive power of ODE models, their parameters have to be inferred from experimental data. For models without events, gradient based optimization schemes perform well for parameter estimation, when sensitivity equations are used for gradient computation. Yet, sensitivity equations for models with parameter- and state-dependent events and event-triggered observations are not supported by existing toolboxes.
In this manuscript, we describe the sensitivity equations for differential equation models with events and demonstrate how to estimate parameters from event-resolved data using event-triggered observations in parameter estimation. We consider a model for GFP expression after transfection and a model for spiking neurons and demonstrate that we can improve computational efficiency and robustness of parameter estimation by using sensitivity equations for systems with events. Moreover, we demonstrate that, by using event-outputs, it is possible to consider event-resolved data, such as time-to-event data, for parameter estimation with ODE models. By providing a user-friendly, modular implementation in the toolbox AMICI, the developed methods are made publicly available and can be integrated in other systems biology toolboxes.
We implement the methods in the open-source toolbox Advanced MATLAB Interface for CVODES and IDAS (AMICI, https://github.com/ICB-DCM/AMICI ).
jan.hasenauer@helmholtz-muenchen.de.
Supplementary data are available at Bioinformatics online.
常微分方程 (ODE) 模型常用于描述生化过程的动态行为。此类 ODE 模型通常通过事件进行扩展,以描述快速潜在过程对过程动态的影响。为了利用 ODE 模型的预测能力,必须从实验数据中推断出它们的参数。对于没有事件的模型,当使用灵敏度方程进行梯度计算时,基于梯度的优化方案在参数估计方面表现良好。然而,现有的工具箱并不支持具有参数和状态相关事件以及事件触发观测的模型的灵敏度方程。
在本文中,我们描述了具有事件的微分方程模型的灵敏度方程,并演示了如何使用事件触发观测从事件分辨数据中估计参数。我们考虑了转染后 GFP 表达的模型和尖峰神经元的模型,并证明了我们可以通过使用具有事件的系统的灵敏度方程来提高参数估计的计算效率和鲁棒性。此外,我们证明了通过使用事件输出,可以考虑事件分辨数据,例如事件到事件的数据,用于具有 ODE 模型的参数估计。通过在工具箱 AMICI 中提供用户友好、模块化的实现,所开发的方法是公开可用的,可以集成到其他系统生物学工具箱中。
我们在开源工具包 Advanced MATLAB Interface for CVODES and IDAS (AMICI,https://github.com/ICB-DCM/AMICI ) 中实现了这些方法。
jan.hasenauer@helmholtz-muenchen.de。
补充数据可在 Bioinformatics 在线获得。