Suppr超能文献

武汉 COVID-19 疫情暴发表明,公开可用的病例数对流行病学建模具有局限性。

COVID-19 outbreak in Wuhan demonstrates the limitations of publicly available case numbers for epidemiological modeling.

机构信息

Faculty of Mathematics and Natural Sciences, University of Bonn, Bonn, Germany; Technische Universität München, Center for Mathematics, Garching, Germany.

Faculty of Mathematics and Natural Sciences, University of Bonn, Bonn, Germany.

出版信息

Epidemics. 2021 Mar;34:100439. doi: 10.1016/j.epidem.2021.100439. Epub 2021 Jan 29.

Abstract

Epidemiological models are widely used to analyze the spread of diseases such as the global COVID-19 pandemic caused by SARS-CoV-2. However, all models are based on simplifying assumptions and often on sparse data. This limits the reliability of parameter estimates and predictions. In this manuscript, we demonstrate the relevance of these limitations and the pitfalls associated with the use of overly simplistic models. We considered the data for the early phase of the COVID-19 outbreak in Wuhan, China, as an example, and perform parameter estimation, uncertainty analysis and model selection for a range of established epidemiological models. Amongst others, we employ Markov chain Monte Carlo sampling, parameter and prediction profile calculation algorithms. Our results show that parameter estimates and predictions obtained for several established models on the basis of reported case numbers can be subject to substantial uncertainty. More importantly, estimates were often unrealistic and the confidence/credibility intervals did not cover plausible values of critical parameters obtained using different approaches. These findings suggest, amongst others, that standard compartmental models can be overly simplistic and that the reported case numbers provide often insufficient information for obtaining reliable and realistic parameter values, and for forecasting the evolution of epidemics.

摘要

流行病学模型被广泛用于分析疾病的传播,例如由 SARS-CoV-2 引起的全球 COVID-19 大流行。然而,所有模型都是基于简化的假设,并且通常基于稀疏的数据。这限制了参数估计和预测的可靠性。在本文中,我们展示了这些限制的相关性以及使用过于简单的模型所带来的陷阱。我们以中国武汉 COVID-19 疫情早期的数据为例,对一系列已建立的流行病学模型进行参数估计、不确定性分析和模型选择。其中,我们采用了马尔可夫链蒙特卡罗采样、参数和预测分布计算算法。我们的结果表明,基于报告病例数对几种已建立模型进行参数估计和预测可能存在很大的不确定性。更重要的是,估计值往往不切实际,置信/可信度区间不包括使用不同方法获得的关键参数的合理值。这些发现表明,标准的房室模型可能过于简单,并且报告的病例数通常提供了获取可靠和现实的参数值以及预测疫情演变的信息不足。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a3/7845523/c4cab257daab/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验