van Sluijs Bob, Zhou Tao, Helwig Britta, Baltussen Mathieu G, Nelissen Frank H T, Heus Hans A, Huck Wilhelm T S
Institute for Molecules and Materials, Radboud University, Nijmegen, AJ, The Netherlands.
Nat Commun. 2024 Feb 21;15(1):1602. doi: 10.1038/s41467-024-45886-9.
Kinetic modeling of in vitro enzymatic reaction networks is vital to understand and control the complex behaviors emerging from the nonlinear interactions inside. However, modeling is severely hampered by the lack of training data. Here, we introduce a methodology that combines an active learning-like approach and flow chemistry to efficiently create optimized datasets for a highly interconnected enzymatic reactions network with multiple sub-pathways. The optimal experimental design (OED) algorithm designs a sequence of out-of-equilibrium perturbations to maximize the information about the reaction kinetics, yielding a descriptive model that allows control of the output of the network towards any cost function. We experimentally validate the model by forcing the network to produce different product ratios while maintaining a minimum level of overall conversion efficiency. Our workflow scales with the complexity of the system and enables the optimization of previously unobtainable network outputs.
体外酶促反应网络的动力学建模对于理解和控制内部非线性相互作用产生的复杂行为至关重要。然而,建模受到训练数据缺乏的严重阻碍。在此,我们引入一种方法,该方法结合了类似主动学习的方法和流动化学,以有效地为具有多个子途径的高度互连的酶促反应网络创建优化数据集。最优实验设计(OED)算法设计一系列非平衡扰动,以最大化关于反应动力学的信息,从而产生一个描述性模型,该模型允许将网络输出控制到任何成本函数。我们通过迫使网络产生不同的产物比率,同时保持最低水平的总转化效率,对该模型进行了实验验证。我们的工作流程随着系统的复杂性而扩展,并能够优化以前无法获得的网络输出。