Suppr超能文献

基于驾驶员视觉的山区公路弯道感知-反应时间预测与辅助模型

Driver Vision Based Perception-Response Time Prediction and Assistance Model on Mountain Highway Curve.

作者信息

Li Yi, Chen Yuren

机构信息

The Key Laboratory of Road and Traffic Engineering, Ministry of Education, College of Transportation Engineering, Tongji University, Shanghai 201804, China.

出版信息

Int J Environ Res Public Health. 2016 Dec 30;14(1):31. doi: 10.3390/ijerph14010031.

Abstract

To make driving assistance system more humanized, this study focused on the prediction and assistance of drivers' perception-response time on mountain highway curves. Field tests were conducted to collect real-time driving data and driver vision information. A driver-vision lane model quantified curve elements in drivers' vision. A multinomial log-linear model was established to predict perception-response time with traffic/road environment information, driver-vision lane model, and mechanical status (last second). A corresponding assistance model showed a positive impact on drivers' perception-response times on mountain highway curves. Model results revealed that the driver-vision lane model and visual elements did have important influence on drivers' perception-response time. Compared with roadside passive road safety infrastructure, proper visual geometry design, timely visual guidance, and visual information integrality of a curve are significant factors for drivers' perception-response time.

摘要

为使驾驶辅助系统更加人性化,本研究聚焦于山区公路弯道上驾驶员感知反应时间的预测与辅助。进行了实地测试以收集实时驾驶数据和驾驶员视觉信息。一个驾驶员视觉车道模型对驾驶员视野中的弯道元素进行了量化。建立了一个多项对数线性模型,用于根据交通/道路环境信息、驾驶员视觉车道模型和机械状态(上一秒)来预测感知反应时间。一个相应的辅助模型对山区公路弯道上驾驶员的感知反应时间产生了积极影响。模型结果表明,驾驶员视觉车道模型和视觉元素确实对驾驶员的感知反应时间有重要影响。与路边被动式道路安全基础设施相比,弯道合理的视觉几何设计、及时的视觉引导和视觉信息完整性是影响驾驶员感知反应时间的重要因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cef3/5295282/2169f3f0b06b/ijerph-14-00031-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验