Vashist Atul, Prithvi Raj D, Gupta Umesh Datta, Bhat Rajiv, Tyagi Jaya Sivaswami
Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India; Experimental Animal Facility, National JALMA Institute of Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India.
Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India.
Int J Mycobacteriol. 2016 Dec;5 Suppl 1:S92-S93. doi: 10.1016/j.ijmyco.2016.09.030. Epub 2016 Nov 11.
OBJECTIVE/BACKGROUND: Bacterial persistence is the hallmark of tuberculosis (TB) and poses the biggest threat to the success of any antitubercular drug regimen. The DevR/DosR dormancy regulator of Mycobacterium tuberculosis belongs to the NarL subfamily of response regulators and is essential for M. tuberculosis persistence in macaque models of TB. The DevR/DosR crystal structure revealed a unique (αβ) topology instead of the classical (αβ) structure found in the receiver domain of other regulators in this subfamily. It was proposed that phosphorylation may culminate in the formation of a DNA-binding-competent dimeric species via α10-α10 helix interactions. Here, we deciphered the role of the α10 helix in activation of the DevR/DosR response regulator in M. tuberculosis.
Wild-type (WT) and mutant DevR [α10-helix-deleted DevR (DevR)] proteins were cloned in suitable plasmids and expressed in Escherichia coli and M. tuberculosis strains. An in vitro phosphorylation assay was performed using acetyl phosphate, and the dimeric/oligomeric status of WT DevR and mutant proteins in the presence or absence of phosphorylation was assessed by glutaraldehyde-based in vitro cross-linking, followed by western blot analysis. Additionally, recombinant M. tuberculosis strains expressing WT and mutant DevR proteins were assessed for dormancy regulon gene expression under aerobic and hypoxic conditions by western blot analysis. An electrophoretic mobility shift assay was performed to assess the in vitro DNA-binding activity of DevR proteins to the target DNA, and biophysical characterization was performed using circular dichroism spectroscopy, fluorescence spectroscopy, and thermal shift assays.
Our results revealed that DevR structure and activity are modulated by phosphorylation-dependent α10 helix dimerization. In its hyperphosphorylated state, DevR is defective in DNA binding and exhibits an open and less stable conformation. The combined results of in vitro cross-linking and genetic analysis established an essential role for the α10 helix in postphosphorylation dimerization of DevR and gene activation. The importance of the α10 helix for dormancy regulon induction in M. tuberculosis established the α10-α10 helix interaction as a novel target in the DevR-signaling pathway for developing inhibitors against DevR, a key regulator of hypoxia-triggered dormancy.
This study established the importance of the α10 helix for DevR activation in M. tuberculosis and proposed a novel molecular tool to screen small-molecule inhibitors targeting dimerization of DevR in the absence (inactive state) or presence of phosphorylation (active state) to combat latent TB infection. This concept can be extended to screen inhibitors against response regulators where dimerization is crucial for their activation.
目的/背景:细菌持留是结核病(TB)的标志,对任何抗结核药物治疗方案的成功构成最大威胁。结核分枝杆菌的DevR/DosR休眠调节因子属于反应调节因子的NarL亚家族,对结核分枝杆菌在TB猕猴模型中的持留至关重要。DevR/DosR晶体结构显示出独特的(αβ)拓扑结构,而非该亚家族中其他调节因子的受体结构域所具有的经典(αβ)结构。有人提出,磷酸化可能通过α10-α10螺旋相互作用最终形成具有DNA结合能力的二聚体。在此,我们解析了α10螺旋在结核分枝杆菌中DevR/DosR反应调节因子激活中的作用。
将野生型(WT)和突变型DevR [α-10螺旋缺失的DevR(DevR)]蛋白克隆到合适的质粒中,并在大肠杆菌和结核分枝杆菌菌株中表达。使用乙酰磷酸进行体外磷酸化测定,并通过基于戊二醛的体外交联评估WT DevR和突变蛋白在磷酸化存在或不存在时的二聚体/寡聚体状态,随后进行蛋白质印迹分析。此外,通过蛋白质印迹分析评估表达WT和突变型DevR蛋白的重组结核分枝杆菌菌株在需氧和缺氧条件下的休眠调节子基因表达。进行电泳迁移率变动分析以评估DevR蛋白与靶DNA的体外DNA结合活性,并使用圆二色光谱、荧光光谱和热位移分析进行生物物理表征。
我们的结果表明,DevR的结构和活性受磷酸化依赖性α10螺旋二聚化的调节。在其过度磷酸化状态下,DevR在DNA结合方面存在缺陷,并表现出开放且不太稳定的构象。体外交联和遗传分析的综合结果确定了α10螺旋在DevR磷酸化后二聚化和基因激活中的重要作用。α10螺旋对结核分枝杆菌中休眠调节子诱导的重要性确立了α10-α10螺旋相互作用作为DevR信号通路中开发针对DevR(缺氧触发休眠的关键调节因子)抑制剂的新靶点。
本研究确立了α10螺旋对结核分枝杆菌中DevR激活的重要性,并提出了一种新的分子工具,用于筛选靶向DevR二聚化的小分子抑制剂,无论是在无磷酸化(无活性状态)还是有磷酸化(活性状态)的情况下,以对抗潜伏性结核感染。这一概念可扩展到筛选针对二聚化对其激活至关重要的反应调节因子的抑制剂。