Suppr超能文献

一种新型的Zn2-Cys6转录因子AtrR通过共同调控cyp51A和cdr1B的表达在烟曲霉的唑类抗性机制中起关键作用。

A Novel Zn2-Cys6 Transcription Factor AtrR Plays a Key Role in an Azole Resistance Mechanism of Aspergillus fumigatus by Co-regulating cyp51A and cdr1B Expressions.

作者信息

Hagiwara Daisuke, Miura Daisuke, Shimizu Kiminori, Paul Sanjoy, Ohba Ayumi, Gonoi Tohru, Watanabe Akira, Kamei Katsuhiko, Shintani Takahiro, Moye-Rowley W Scott, Kawamoto Susumu, Gomi Katsuya

机构信息

Medical Mycology Research Center, Chiba University, Chiba, Japan.

Department of Bioindustrial Informatics and Genomics, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.

出版信息

PLoS Pathog. 2017 Jan 4;13(1):e1006096. doi: 10.1371/journal.ppat.1006096. eCollection 2017 Jan.

Abstract

Successful treatment of aspergillosis caused by Aspergillus fumigatus is threatened by an increasing incidence of drug resistance. This situation is further complicated by the finding that strains resistant to azoles, the major antifungal drugs for aspergillosis, have been widely disseminated across the globe. To elucidate mechanisms underlying azole resistance, we identified a novel transcription factor that is required for normal azole resistance in Aspergillus fungi including A. fumigatus, Aspergillus oryzae, and Aspergillus nidulans. This fungal-specific Zn2-Cys6 type transcription factor AtrR was found to regulate expression of the genes related to ergosterol biosynthesis, including cyp51A that encodes a target protein of azoles. The atrR deletion mutant showed impaired growth under hypoxic conditions and attenuation of virulence in murine infection model for aspergillosis. These results were similar to the phenotypes for a mutant strain lacking SrbA that is also a direct regulator for the cyp51A gene. Notably, AtrR was responsible for the expression of cdr1B that encodes an ABC transporter related to azole resistance, whereas SrbA was not involved in the regulation. Chromatin immunoprecipitation assays indicated that AtrR directly bound both the cyp51A and cdr1B promoters. In the clinically isolated itraconazole resistant strain that harbors a mutant Cyp51A (G54E), deletion of the atrR gene resulted in a hypersensitivity to the azole drugs. Together, our results revealed that AtrR plays a pivotal role in a novel azole resistance mechanism by co-regulating the drug target (Cyp51A) and putative drug efflux pump (Cdr1B).

摘要

烟曲霉引起的曲霉病的成功治疗受到耐药性发病率上升的威胁。对曲霉病的主要抗真菌药物唑类耐药的菌株在全球广泛传播,这一情况使问题更加复杂。为了阐明唑类耐药的潜在机制,我们鉴定了一种新型转录因子,它是烟曲霉、米曲霉和构巢曲霉等曲霉属真菌正常唑类耐药所必需的。发现这种真菌特异性的Zn2-Cys6型转录因子AtrR可调节与麦角固醇生物合成相关的基因的表达,包括编码唑类靶蛋白的cyp51A。atrR缺失突变体在低氧条件下生长受损,在曲霉病小鼠感染模型中毒力减弱。这些结果与缺乏同样是cyp51A基因直接调节因子的SrbA的突变菌株的表型相似。值得注意的是,AtrR负责编码与唑类耐药相关的ABC转运蛋白的cdr1B的表达,而SrbA不参与该调节。染色质免疫沉淀试验表明,AtrR直接结合cyp51A和cdr1B启动子。在携带突变型Cyp51A(G54E)的临床分离的伊曲康唑耐药菌株中,atrR基因的缺失导致对唑类药物超敏。总之,我们的结果表明,AtrR通过共同调节药物靶点(Cyp51A)和假定的药物外排泵(Cdr1B)在一种新的唑类耐药机制中起关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f33/5215518/7b15df3c0e70/ppat.1006096.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验