Suppr超能文献

从同源模型到一组预测性结合口袋——5-羟色胺受体案例研究

From Homology Models to a Set of Predictive Binding Pockets-a 5-HT Receptor Case Study.

作者信息

Warszycki Dawid, Rueda Manuel, Mordalski Stefan, Kristiansen Kurt, Satała Grzegorz, Rataj Krzysztof, Chilmonczyk Zdzisław, Sylte Ingebrigt, Abagyan Ruben, Bojarski Andrzej J

机构信息

Institute of Pharmacology, Polish Academy of Sciences , 12 Smetna Street, 31-343 Kraków, Poland.

Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego , 9500 Gilman Drive, MC 0747 La Jolla, California 92093-0747, United States.

出版信息

J Chem Inf Model. 2017 Feb 27;57(2):311-321. doi: 10.1021/acs.jcim.6b00263. Epub 2017 Jan 18.

Abstract

Despite its remarkable importance in the arena of drug design, serotonin 1A receptor (5-HT) has been elusive to the X-ray crystallography community. This lack of direct structural information not only hampers our knowledge regarding the binding modes of many popular ligands (including the endogenous neurotransmitter-serotonin), but also limits the search for more potent compounds. In this paper we shed new light on the 3D pharmacological properties of the 5-HT receptor by using a ligand-guided approach (ALiBERO) grounded in the Internal Coordinate Mechanics (ICM) docking platform. Starting from a homology template and set of known actives, the method introduces receptor flexibility via Normal Mode Analysis and Monte Carlo sampling, to generate a subset of pockets that display enriched discrimination of actives from inactives in retrospective docking. Here, we thoroughly investigated the repercussions of using different protein templates and the effect of compound selection on screening performance. Finally, the best resulting protein models were applied prospectively in a large virtual screening campaign, in which two new active compounds were identified that were chemically distinct from those described in the literature.

摘要

尽管血清素1A受体(5-HT)在药物设计领域具有显著重要性,但X射线晶体学领域一直难以对其进行研究。缺乏直接的结构信息不仅阻碍了我们对许多常见配体(包括内源性神经递质——血清素)结合模式的了解,也限制了对更有效化合物的探索。在本文中,我们通过使用基于内部坐标力学(ICM)对接平台的配体导向方法(ALiBERO),揭示了5-HT受体的三维药理学特性。该方法从同源模板和一组已知活性物质出发,通过简正模式分析和蒙特卡罗采样引入受体灵活性,以生成在回顾性对接中对活性物质和非活性物质具有增强区分能力的口袋子集。在此,我们全面研究了使用不同蛋白质模板的影响以及化合物选择对筛选性能的作用。最后,将得到的最佳蛋白质模型前瞻性地应用于大规模虚拟筛选活动中,在此活动中鉴定出了两种化学结构与文献中描述的不同的新活性化合物。

相似文献

引用本文的文献

3
Artificial intelligence and big data facilitated targeted drug discovery.人工智能和大数据促进了靶向药物发现。
Stroke Vasc Neurol. 2019 Nov 7;4(4):206-213. doi: 10.1136/svn-2019-000290. eCollection 2019 Dec.
8
Improving virtual screening of G protein-coupled receptors via ligand-directed modeling.通过配体导向建模改进G蛋白偶联受体的虚拟筛选
PLoS Comput Biol. 2017 Nov 13;13(11):e1005819. doi: 10.1371/journal.pcbi.1005819. eCollection 2017 Nov.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验