Suppr超能文献

双波长视网膜图像去噪算法,提高血氧饱和度计算精度。

Dual-wavelength retinal images denoising algorithm for improving the accuracy of oxygen saturation calculation.

机构信息

Chinese Academy of Sciences, The Key Laboratory of Adaptive Optics, No. 1 Guangdian Avenue Xihang Port Shuangliu, Chengdu 610209, ChinabUniversity of Electronic Science and Technology of China, School of Optoelectronic Information, No. 4 Block 2 N. Jianshe Road, Chengdu 610054, ChinacChinese Academy of Sciences, Institute of Optics and Electronics, No. 1 Guangdian Avenue Xihang Port Shuangliu, Chengdu 610209, ChinadUniversity of Chinese Academy of Sciences, No. 19, Yuquan Road, Shijingshan, Beijing 100049, China.

Chinese Academy of Sciences, The Key Laboratory of Adaptive Optics, No. 1 Guangdian Avenue Xihang Port Shuangliu, Chengdu 610209, ChinacChinese Academy of Sciences, Institute of Optics and Electronics, No. 1 Guangdian Avenue Xihang Port Shuangliu, Chengdu 610209, China.

出版信息

J Biomed Opt. 2017 Jan 1;22(1):16004. doi: 10.1117/1.JBO.22.1.016004.

Abstract

Noninvasive measurement of hemoglobin oxygen saturation ( SO 2 ) in retinal vessels is based on spectrophotometry and spectral absorption characteristics of tissue. Retinal images at 570 and 600 nm are simultaneously captured by dual-wavelength retinal oximetry based on fundus camera. SO 2 is finally measured after vessel segmentation, image registration, and calculation of optical density ratio of two images. However, image noise can dramatically affect subsequent image processing and SO 2 calculation accuracy. The aforementioned problem remains to be addressed. The purpose of this study was to improve image quality and SO 2 calculation accuracy by noise analysis and denoising algorithm for dual-wavelength images. First, noise parameters were estimated by mixed Poisson–Gaussian (MPG) noise model. Second, an MPG denoising algorithm which we called variance stabilizing transform (VST) + dual-domain image denoising (DDID) was proposed based on VST and improved dual-domain filter. The results show that VST + DDID is able to effectively remove MPG noise and preserve image edge details. VST + DDID is better than VST + block-matching and three-dimensional filtering, especially in preserving low-contrast details. The following simulation and analysis indicate that MPG noise in the retinal images can lead to erroneously low measurement for SO 2 , and the denoised images can provide more accurate grayscale values for retinal oximetry.

摘要

视网膜血管中血红蛋白氧饱和度 (SO2) 的无创测量基于分光光度法和组织的光谱吸收特性。基于眼底相机的双波长视网膜血氧计同时捕获 570nm 和 600nm 两个波长的视网膜图像。在进行血管分割、图像配准以及计算两幅图像的光密度比后,最终测量 SO2。然而,图像噪声会极大地影响后续的图像处理和 SO2 计算的准确性。这个问题亟待解决。本研究旨在通过对双波长图像进行噪声分析和去噪算法来提高图像质量和 SO2 计算的准确性。首先,通过混合泊松-高斯 (MPG) 噪声模型估计噪声参数。其次,基于方差稳定变换 (VST) 和改进的双域滤波器,提出了一种 MPG 去噪算法,即方差稳定变换 (VST) + 双域图像去噪 (DDID)。结果表明,VST + DDID 能够有效地去除 MPG 噪声并保留图像边缘细节。VST + DDID 优于 VST + 块匹配和三维滤波,尤其是在保留低对比度细节方面。以下的模拟和分析表明,视网膜图像中的 MPG 噪声会导致 SO2 的测量值偏低,而去噪后的图像可以为视网膜血氧计提供更准确的灰度值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验