Kubala Eugen, Muñoz-Álvarez Kim A, Topping Geoffrey, Hundshammer Christian, Feuerecker Benedikt, Gómez Pedro A, Pariani Giorgio, Schilling Franz, Glaser Steffen J, Schulte Rolf F, Menzel Marion I, Schwaiger Markus
Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München; Department of Chemistry, Technische Universität München; GE Global Research;
Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München.
J Vis Exp. 2016 Dec 30(118):54751. doi: 10.3791/54751.
In the past decades, new methods for tumor staging, restaging, treatment response monitoring, and recurrence detection of a variety of cancers have emerged in conjunction with the state-of-the-art positron emission tomography with F-fluorodeoxyglucose ([F]-FDG PET). C magnetic resonance spectroscopic imaging (CMRSI) is a minimally invasive imaging method that enables the monitoring of metabolism in vivo and in real time. As with any other method based on C nuclear magnetic resonance (NMR), it faces the challenge of low thermal polarization and a subsequent low signal-to-noise ratio due to the relatively low gyromagnetic ratio of C and its low natural abundance in biological samples. By overcoming these limitations, dynamic nuclear polarization (DNP) with subsequent sample dissolution has recently enabled commonly used NMR and magnetic resonance imaging (MRI) systems to measure, study, and image key metabolic pathways in various biological systems. A particularly interesting and promising molecule used in CMRSI is [1-C]pyruvate, which, in the last ten years, has been widely used for in vitro, preclinical, and, more recently, clinical studies to investigate the cellular energy metabolism in cancer and other diseases. In this article, we outline the technique of dissolution DNP using a 3.35 T preclinical DNP hyperpolarizer and demonstrate its usage in in vitro studies. A similar protocol for hyperpolarization may be applied for the most part in in vivo studies as well. To do so, we used lactate dehydrogenase (LDH) and catalyzed the metabolic reaction of [1-C]pyruvate to [1-C]lactate in a prostate carcinoma cell line, PC3, in vitro using CMRSI.
在过去几十年中,随着最先进的F-氟脱氧葡萄糖正电子发射断层扫描([F]-FDG PET)技术的出现,出现了多种癌症的肿瘤分期、再分期、治疗反应监测和复发检测的新方法。碳磁共振波谱成像(CMRSI)是一种微创成像方法,能够在体内实时监测新陈代谢。与任何其他基于碳核磁共振(NMR)的方法一样,由于碳的旋磁比相对较低及其在生物样品中的天然丰度较低,它面临着热极化低以及随后信噪比低的挑战。通过克服这些限制,随后进行样品溶解的动态核极化(DNP)最近使常用的NMR和磁共振成像(MRI)系统能够测量、研究和成像各种生物系统中的关键代谢途径。在CMRSI中使用的一种特别有趣且有前景的分子是[1-¹³C]丙酮酸,在过去十年中,它已被广泛用于体外、临床前以及最近的临床研究,以研究癌症和其他疾病中的细胞能量代谢。在本文中,我们概述了使用3.35 T临床前DNP超极化器进行溶解DNP的技术,并展示了其在体外研究中的应用。类似的超极化方案在很大程度上也可应用于体内研究。为此,我们使用乳酸脱氢酶(LDH),并在体外使用CMRSI在前列腺癌细胞系PC3中催化[1-¹³C]丙酮酸向[1-¹³C]乳酸的代谢反应。