Rutkauskas M, Krivoy A, Szczelkun M D, Rouillon C, Seidel R
Molecular Biophysics Group, Institute for Experimental Physics I, Universität Leipzig, Leipzig, Germany.
Molecular Biophysics Group, Institute for Experimental Physics I, Universität Leipzig, Leipzig, Germany; Skolkovo Institute of Science and Technology, Skolkovo, Russia.
Methods Enzymol. 2017;582:239-273. doi: 10.1016/bs.mie.2016.10.001. Epub 2016 Dec 5.
Ribonucleoprotein (RNP) complexes from CRISPR-Cas systems have attracted enormous interest since they can be easily and flexibly reprogrammed to target any desired locus for genome engineering and gene regulation applications. Basis for the programmability is a short RNA (crRNA) inside these complexes that recognizes the target nucleic acid by base pairing. For CRISPR-Cas systems that target double-stranded DNA this results in local DNA unwinding and formation of a so-called R-loop structure. Here we provide an overview how this target recognition mechanism can be dissected in great detail at the level of a single molecule. Specifically, we demonstrate how magnetic tweezers are applied to measure the local DNA unwinding at the target in real time. To this end we introduce the technique and the measurement principle. By studying modifications of the consensus target sequence, we show how different sequence elements contribute to the target recognition mechanism. From these data, a unified target recognition mechanism can be concluded for the RNPs Cascade and Cas9 from types I and II CRISPR-Cas systems. R-loop formation is hereby initiated on the target at an upstream element, called protospacer adjacent motif (PAM), from which the R-loop structure zips directionally toward the PAM-distal end of the target. At mismatch positions, the R-loop propagation stalls and further propagation competes with collapse of the structure. Upon full R-loop zipping conformational changes within the RNPs trigger degradation of the DNA target. This represents a shared labor mechanism in which zipping between nucleic acid strands is the actual target recognition mechanism while sensing of the R-loop arrival at the PAM-distal end just verifies the success of the full zipping.
自CRISPR-Cas系统的核糖核蛋白(RNP)复合物能够被轻松灵活地重新编程,以靶向基因组工程和基因调控应用中的任何所需位点以来,它们就引起了极大的关注。这种可编程性的基础是这些复合物中的一种短RNA(crRNA),它通过碱基配对识别靶核酸。对于靶向双链DNA的CRISPR-Cas系统,这会导致局部DNA解旋并形成所谓的R环结构。在这里,我们概述了如何在单分子水平上详细剖析这种靶标识别机制。具体而言,我们展示了如何应用磁镊实时测量靶标处的局部DNA解旋。为此,我们介绍了该技术和测量原理。通过研究共有靶序列的修饰,我们展示了不同的序列元件如何对靶标识别机制做出贡献。从这些数据中,可以得出I型和II型CRISPR-Cas系统的RNP Cascade和Cas9的统一靶标识别机制。R环的形成在此处从一个称为原间隔相邻基序(PAM)的上游元件开始于靶标上,R环结构从该元件朝着靶标的PAM远端定向拉链式延伸。在错配位置,R环的延伸会停滞,进一步的延伸与结构的坍塌相互竞争。当R环完全拉链式延伸时,RNP内的构象变化会触发DNA靶标的降解。这代表了一种共享机制,其中核酸链之间的拉链式延伸是实际的靶标识别机制,而检测R环到达PAM远端仅验证了完全拉链式延伸的成功。