Suppr超能文献

声流法富集纳米粒子。

Enriching Nanoparticles via Acoustofluidics.

机构信息

Department of Engineering Science and Mechanics, The Pennsylvania State University , University Park, Pennsylvania 16802, United States.

C. Eugene Bennett Department of Chemistry, West Virginia University , Morgantown, West Virginia 26506, United States.

出版信息

ACS Nano. 2017 Jan 24;11(1):603-612. doi: 10.1021/acsnano.6b06784. Epub 2017 Jan 9.

Abstract

Focusing and enriching submicrometer and nanometer scale objects is of great importance for many applications in biology, chemistry, engineering, and medicine. Here, we present an acoustofluidic chip that can generate single vortex acoustic streaming inside a glass capillary through using low-power acoustic waves (only 5 V is required). The single vortex acoustic streaming that is generated, in conjunction with the acoustic radiation force, is able to enrich submicrometer- and nanometer-sized particles in a small volume. Numerical simulations were used to elucidate the mechanism of the single vortex formation and were verified experimentally, demonstrating the focusing of silica and polystyrene particles ranging in diameter from 80 to 500 nm. Moreover, the acoustofluidic chip was used to conduct an immunoassay in which nanoparticles that captured fluorescently labeled biomarkers were concentrated to enhance the emitted signal. With its advantages in simplicity, functionality, and power consumption, the acoustofluidic chip we present here is promising for many point-of-care applications.

摘要

聚焦和浓缩亚微米和纳米尺度的物体对于生物学、化学、工程学和医学中的许多应用都非常重要。在这里,我们展示了一种声流控芯片,它可以通过使用低功率声波(仅需 5 V)在玻璃毛细管内产生单一的漩涡声流。所产生的单一漩涡声流与声辐射力相结合,可以在小体积内浓缩亚微米和纳米级大小的颗粒。数值模拟用于阐明单一漩涡形成的机制,并通过实验得到验证,证明了直径为 80 至 500nm 的二氧化硅和聚苯乙烯颗粒的聚焦效果。此外,该声流控芯片还用于进行免疫分析,其中捕获了荧光标记生物标志物的纳米颗粒被浓缩以增强发出的信号。由于其具有简单、功能强大和功耗低的优点,因此我们这里展示的声流控芯片有望在许多即时医疗应用中得到应用。

相似文献

1
Enriching Nanoparticles via Acoustofluidics.声流法富集纳米粒子。
ACS Nano. 2017 Jan 24;11(1):603-612. doi: 10.1021/acsnano.6b06784. Epub 2017 Jan 9.
3
Continuous Enrichment and Separation of Nanoparticles via Acoustic Streaming.通过声流实现纳米颗粒的连续富集与分离
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:2231-2234. doi: 10.1109/EMBC44109.2020.9175774.
8
Acoustofluidic manipulation for submicron to nanoparticles.用于亚微米至纳米颗粒的声流体操控
Electrophoresis. 2024 Dec;45(23-24):2132-2153. doi: 10.1002/elps.202400062. Epub 2024 May 25.

引用本文的文献

3
Exploiting Sound for Emerging Applications of Extracellular Vesicles.利用声音实现细胞外囊泡的新兴应用
Nano Res. 2024 Feb;17(2):462-475. doi: 10.1007/s12274-023-5840-6. Epub 2023 Jul 1.
5
Aerosol jet printing of surface acoustic wave microfluidic devices.表面声波微流控器件的气溶胶喷射打印
Microsyst Nanoeng. 2024 Jan 1;10:2. doi: 10.1038/s41378-023-00606-z. eCollection 2024.
8
Quantitative Acoustophoresis.定量声泳法
ACS Nanosci Au. 2022 Aug 17;2(4):341-354. doi: 10.1021/acsnanoscienceau.2c00002. Epub 2022 Jun 22.
10
Sonoporation: Past, Present, and Future.声穿孔法:过去、现在与未来。
Adv Mater Technol. 2022 Jan;7(1). doi: 10.1002/admt.202100885. Epub 2021 Sep 14.

本文引用的文献

1
High-throughput acoustic separation of platelets from whole blood.高通量全血中血小板的声分离。
Lab Chip. 2016 Sep 21;16(18):3466-72. doi: 10.1039/c6lc00682e. Epub 2016 Aug 1.
4
Three-dimensional manipulation of single cells using surface acoustic waves.利用表面声波对单细胞进行三维操控。
Proc Natl Acad Sci U S A. 2016 Feb 9;113(6):1522-7. doi: 10.1073/pnas.1524813113. Epub 2016 Jan 25.
6
A high-throughput acoustic cell sorter.一种高通量声学细胞分选仪。
Lab Chip. 2015 Oct 7;15(19):3870-3879. doi: 10.1039/c5lc00706b.
7
Acoustic separation of circulating tumor cells.循环肿瘤细胞的声学分离。
Proc Natl Acad Sci U S A. 2015 Apr 21;112(16):4970-5. doi: 10.1073/pnas.1504484112. Epub 2015 Apr 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验