Pham Tuan Anh, Ping Yuan, Galli Giulia
Quantum Simulations Group, Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
Nat Mater. 2017 Apr;16(4):401-408. doi: 10.1038/nmat4803. Epub 2017 Jan 9.
The generation of hydrogen from water and sunlight offers a promising approach for producing scalable and sustainable carbon-free energy. The key of a successful solar-to-fuel technology is the design of efficient, long-lasting and low-cost photoelectrochemical cells, which are responsible for absorbing sunlight and driving water splitting reactions. To this end, a detailed understanding and control of heterogeneous interfaces between photoabsorbers, electrolytes and catalysts present in photoelectrochemical cells is essential. Here we review recent progress and open challenges in predicting physicochemical properties of heterogeneous interfaces for solar water splitting applications using first-principles-based approaches, and highlights the key role of these calculations in interpreting increasingly complex experiments.
利用水和阳光生成氢气为生产可扩展且可持续的无碳能源提供了一种很有前景的方法。成功的太阳能转化为燃料技术的关键在于设计高效、耐用且低成本的光电化学电池,这些电池负责吸收阳光并驱动水分解反应。为此,详细了解和控制光电化学电池中光吸收剂、电解质和催化剂之间的异质界面至关重要。在此,我们综述了使用基于第一性原理的方法预测用于太阳能水分解应用的异质界面物理化学性质的最新进展和面临的挑战,并强调了这些计算在解释日益复杂的实验中的关键作用。