Suppr超能文献

对接受治疗者和未接受治疗者的平均治疗效果进行G计算。

G-computation of average treatment effects on the treated and the untreated.

作者信息

Wang Aolin, Nianogo Roch A, Arah Onyebuchi A

机构信息

Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.

California Center for Population Research (CCPR), Los Angeles, CA, USA.

出版信息

BMC Med Res Methodol. 2017 Jan 9;17(1):3. doi: 10.1186/s12874-016-0282-4.

Abstract

BACKGROUND

Average treatment effects on the treated (ATT) and the untreated (ATU) are useful when there is interest in: the evaluation of the effects of treatments or interventions on those who received them, the presence of treatment heterogeneity, or the projection of potential outcomes in a target (sub-) population. In this paper we illustrate the steps for estimating ATT and ATU using g-computation implemented via Monte Carlo simulation.

METHODS

To obtain marginal effect estimates for ATT and ATU we used a three-step approach: fitting a model for the outcome, generating potential outcome variables for ATT and ATU separately, and regressing each potential outcome variable on treatment intervention.

RESULTS

The estimates for ATT, ATU and average treatment effect (ATE) were of similar magnitude, with ATE being in between ATT and ATU as expected. In our illustrative example, the effect (risk difference [RD]) of a higher education on angina among the participants who indeed have at least a high school education (ATT) was -0.019 (95% CI: -0.040, -0.007) and that among those who have less than a high school education in India (ATU) was -0.012 (95% CI: -0.036, 0.010).

CONCLUSIONS

The g-computation algorithm is a powerful way of estimating standardized estimates like the ATT and ATU. Its use should be encouraged in modern epidemiologic teaching and practice.

摘要

背景

当人们关注以下方面时,对接受治疗者的平均治疗效果(ATT)和未接受治疗者的平均治疗效果(ATU)很有用:评估治疗或干预措施对接受者的效果、治疗异质性的存在,或目标(亚)人群中潜在结果的预测。在本文中,我们阐述了使用通过蒙特卡罗模拟实现的g计算来估计ATT和ATU的步骤。

方法

为了获得ATT和ATU的边际效应估计值,我们采用了三步法:拟合结果模型、分别生成ATT和ATU的潜在结果变量,以及将每个潜在结果变量对治疗干预进行回归。

结果

ATT、ATU和平均治疗效果(ATE)的估计值大小相似,正如预期的那样,ATE介于ATT和ATU之间。在我们的示例中,在印度确实至少受过高中教育的参与者中,高等教育对心绞痛的影响(风险差[RD])(ATT)为-0.019(95%CI:-0.040,-0.007),而在受教育程度低于高中的参与者中(ATU)为-0.012(95%CI:-0.036,0.010)。

结论

g计算算法是估计ATT和ATU等标准化估计值的有力方法。应在现代流行病学教学和实践中鼓励使用该方法。

相似文献

2
3
On the use of propensity scores in case of rare exposure.罕见暴露情况下倾向得分的应用。
BMC Med Res Methodol. 2016 Mar 31;16:38. doi: 10.1186/s12874-016-0135-1.
4
G-computation demonstration in causal mediation analysis.因果中介分析中的G计算演示。
Eur J Epidemiol. 2015 Oct;30(10):1119-27. doi: 10.1007/s10654-015-0100-z. Epub 2015 Nov 4.

引用本文的文献

本文引用的文献

5
Methods for dealing with time-dependent confounding.处理时依混杂的方法。
Stat Med. 2013 Apr 30;32(9):1584-618. doi: 10.1002/sim.5686. Epub 2012 Dec 3.
8
Invited commentary: G-computation--lost in translation?特邀评论:G 计算——翻译中的迷失?
Am J Epidemiol. 2011 Apr 1;173(7):739-42. doi: 10.1093/aje/kwq474. Epub 2011 Mar 16.
9
Invited commentary: positivity in practice.特邀评论:实践中的积极性。
Am J Epidemiol. 2010 Mar 15;171(6):674-7; discussion 678-81. doi: 10.1093/aje/kwp436. Epub 2010 Feb 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验