Suppr超能文献

开发一种基于PI-RADS v2的新型列线图以预测高级别前列腺癌。

Developing a new PI-RADS v2-based nomogram for forecasting high-grade prostate cancer.

作者信息

Niu X-K, He W-F, Zhang Y, Das S K, Li J, Xiong Y, Wang Y-H

机构信息

Department of Radiology, Affiliated Hospital of Chengdu University, Chengdu, 610081, China.

Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Sichuan 637000, China.

出版信息

Clin Radiol. 2017 Jun;72(6):458-464. doi: 10.1016/j.crad.2016.12.005. Epub 2017 Jan 6.

Abstract

AIM

To establish a predictive nomogram for high-grade prostate cancer (HGPCa) in biopsy-naive patients based on the Prostate Imaging-Reporting and Data System version 2 (PI-RADS v2), magnetic resonance imaging (MRI)-based prostate volume (PV), MRI-based PV-adjusted prostate-specific antigen density (PSAD), and other classical parameters.

MATERIAL AND METHODS

Between August 2014 and August 2015, 158 men who were eligible for analysis were included as the training cohort. A prediction model for HGPCa was built using backward logistic regression and was presented on a nomogram. The prediction model was evaluated by a validation cohort between September 2015 and March 2016 (n=89). Histology of all lesions was obtained with MRI-directed transrectal ultrasound (TRUS)-guided targeted and sectoral biopsy.

RESULTS

The multivariate analysis revealed that patient age, PI-RADS v2 score, and adjusted PSAD were independent predictors for HGPCa. The most discriminative cut-off value for the logistic regression model was 0.33; the sensitivity, specificity, positive predictive value, and negative predictive value were 83.3%, 87.4%, 88.4%, and 81.2%, respectively. The diagnostic performance measures retained similar values in the validation cohort (AUC=0.83).

CONCLUSION

The nomogram for forecasting HGPCa is effective and potentially reducing harm from unnecessary prostate biopsy and over-diagnosis.

摘要

目的

基于前列腺影像报告和数据系统第2版(PI-RADS v2)、磁共振成像(MRI)测定的前列腺体积(PV)、基于MRI的PV校正前列腺特异性抗原密度(PSAD)以及其他经典参数,为未经活检的患者建立高级别前列腺癌(HGPCa)预测列线图。

材料与方法

2014年8月至2015年8月期间,158名符合分析条件的男性被纳入训练队列。使用向后逻辑回归建立HGPCa预测模型,并在列线图上展示。2015年9月至2016年3月期间的验证队列(n = 89)对预测模型进行评估。所有病变的组织学检查通过MRI引导的经直肠超声(TRUS)引导下的靶向和扇形活检获得。

结果

多变量分析显示患者年龄、PI-RADS v2评分和校正后的PSAD是HGPCa的独立预测因素。逻辑回归模型最具判别力的截断值为0.33;敏感性、特异性、阳性预测值和阴性预测值分别为83.3%、87.4%、88.4%和81.2%。验证队列中的诊断性能指标保持相似值(AUC = 0.83)。

结论

预测HGPCa的列线图有效,可能减少不必要的前列腺活检和过度诊断带来的危害。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验