Suppr超能文献

电刺激诱发神经递质释放的计算模型:预测刺激诱发多巴胺释放的非线性方法

Computational Modeling of Neurotransmitter Release Evoked by Electrical Stimulation: Nonlinear Approaches to Predicting Stimulation-Evoked Dopamine Release.

作者信息

Trevathan James K, Yousefi Ali, Park Hyung Ook, Bartoletta John J, Ludwig Kip A, Lee Kendall H, Lujan J Luis

机构信息

Department of Neurologic Surgery, Massachusetts General Hospital and Harvard Medical School , 25 Shattuck Street, Boston, Massachusetts 02115, United States.

出版信息

ACS Chem Neurosci. 2017 Feb 15;8(2):394-410. doi: 10.1021/acschemneuro.6b00319. Epub 2017 Feb 6.

Abstract

Neurochemical changes evoked by electrical stimulation of the nervous system have been linked to both therapeutic and undesired effects of neuromodulation therapies used to treat obsessive-compulsive disorder, depression, epilepsy, Parkinson's disease, stroke, hypertension, tinnitus, and many other indications. In fact, interest in better understanding the role of neurochemical signaling in neuromodulation therapies has been a focus of recent government- and industry-sponsored programs whose ultimate goal is to usher in an era of personalized medicine by creating neuromodulation therapies that respond to real-time changes in patient status. A key element to achieving these precision therapeutic interventions is the development of mathematical modeling approaches capable of describing the nonlinear transfer function between neuromodulation parameters and evoked neurochemical changes. Here, we propose two computational modeling frameworks, based on artificial neural networks (ANNs) and Volterra kernels, that can characterize the input/output transfer functions of stimulation-evoked neurochemical release. We evaluate the ability of these modeling frameworks to characterize subject-specific neurochemical kinetics by accurately describing stimulation-evoked dopamine release across rodent (R = 0.83 Volterra kernel, R = 0.86 ANN), swine (R = 0.90 Volterra kernel, R = 0.93 ANN), and non-human primate (R = 0.98 Volterra kernel, R = 0.96 ANN) models of brain stimulation. Ultimately, these models will not only improve understanding of neurochemical signaling in healthy and diseased brains but also facilitate the development of neuromodulation strategies capable of controlling neurochemical release via closed-loop strategies.

摘要

神经系统电刺激引发的神经化学变化与用于治疗强迫症、抑郁症、癫痫、帕金森病、中风、高血压、耳鸣及许多其他病症的神经调节疗法的治疗效果和不良影响均有关联。事实上,深入了解神经化学信号在神经调节疗法中的作用已成为近期政府和行业资助项目的重点,这些项目的最终目标是通过创建能响应患者状态实时变化的神经调节疗法,开创个性化医疗的时代。实现这些精准治疗干预的一个关键要素是开发能够描述神经调节参数与诱发的神经化学变化之间非线性传递函数的数学建模方法。在此,我们提出了基于人工神经网络(ANN)和沃尔泰拉核的两个计算建模框架,它们能够表征刺激诱发的神经化学释放的输入/输出传递函数。我们通过准确描述啮齿动物(沃尔泰拉核的R = 0.83,人工神经网络的R = 0.86)、猪(沃尔泰拉核的R = 0.90,人工神经网络的R = 0.93)和非人类灵长类动物(沃尔泰拉核的R = 0.98,人工神经网络的R = 0.96)脑刺激模型中刺激诱发的多巴胺释放,来评估这些建模框架表征特定个体神经化学动力学的能力。最终,这些模型不仅将增进对健康和患病大脑中神经化学信号的理解,还将促进能够通过闭环策略控制神经化学释放的神经调节策略的开发。

相似文献

5
A neurochemical closed-loop controller for deep brain stimulation: toward individualized smart neuromodulation therapies.
Front Neurosci. 2014 Jun 25;8:169. doi: 10.3389/fnins.2014.00169. eCollection 2014.
9
Nonlinear dynamic modeling of spike train transformations for hippocampal-cortical prostheses.
IEEE Trans Biomed Eng. 2007 Jun;54(6 Pt 1):1053-66. doi: 10.1109/TBME.2007.891948.
10
Nonlinear predictive control for adaptive adjustments of deep brain stimulation parameters in basal ganglia-thalamic network.
Neural Netw. 2018 Feb;98:283-295. doi: 10.1016/j.neunet.2017.12.001. Epub 2017 Dec 7.

引用本文的文献

2
Toward Precise Modeling of Dopamine Release Kinetics: Comparison and Validation of Kinetic Models Using Voltammetry.
ACS Omega. 2024 Jul 24;9(31):33563-33573. doi: 10.1021/acsomega.4c01322. eCollection 2024 Aug 6.
3
Acupuncture for tumor-related depression: a systematic review and meta-analysis.
Front Oncol. 2023 Aug 8;13:1198286. doi: 10.3389/fonc.2023.1198286. eCollection 2023.
4
Defining a Path Toward the Use of Fast-Scan Cyclic Voltammetry in Human Studies.
Front Neurosci. 2021 Nov 12;15:728092. doi: 10.3389/fnins.2021.728092. eCollection 2021.
5
Evaluation of electrochemical methods for tonic dopamine detection .
Trends Analyt Chem. 2020 Nov;132. doi: 10.1016/j.trac.2020.116049. Epub 2020 Oct 20.
6
Machine Learning's Application in Deep Brain Stimulation for Parkinson's Disease: A Review.
Brain Sci. 2020 Nov 1;10(11):809. doi: 10.3390/brainsci10110809.
7
Regional Variation in Striatal Dopamine Spillover and Release Plasticity.
ACS Chem Neurosci. 2020 Mar 18;11(6):888-899. doi: 10.1021/acschemneuro.9b00577. Epub 2020 Feb 28.
8
Closed-Loop Implantable Therapeutic Neuromodulation Systems Based on Neurochemical Monitoring.
Front Neurosci. 2019 Aug 20;13:808. doi: 10.3389/fnins.2019.00808. eCollection 2019.
9
Vesicular Antipsychotic Drug Release Evokes an Extra Phase of Dopamine Transmission.
Schizophr Bull. 2020 Apr 10;46(3):643-649. doi: 10.1093/schbul/sbz085.

本文引用的文献

2
Rapid signalling in distinct dopaminergic axons during locomotion and reward.
Nature. 2016 Jul 28;535(7613):505-10. doi: 10.1038/nature18942. Epub 2016 Jul 11.
4
Using goal-driven deep learning models to understand sensory cortex.
Nat Neurosci. 2016 Mar;19(3):356-65. doi: 10.1038/nn.4244.
5
Design and in vivo evaluation of more efficient and selective deep brain stimulation electrodes.
J Neural Eng. 2015 Aug;12(4):046030. doi: 10.1088/1741-2560/12/4/046030. Epub 2015 Jul 14.
6
Modeling the kinetic diversity of dopamine in the dorsal striatum.
ACS Chem Neurosci. 2015 Aug 19;6(8):1468-75. doi: 10.1021/acschemneuro.5b00128. Epub 2015 Jul 1.
8
Kinetic diversity of dopamine transmission in the dorsal striatum.
J Neurochem. 2015 May;133(4):522-31. doi: 10.1111/jnc.13059. Epub 2015 Mar 13.
9
Implementing spiking neuron model and spike-timing-dependent plasticity with generalized Laguerre-Volterra models.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:714-7. doi: 10.1109/EMBC.2014.6943690.
10
The medial forebrain bundle as a deep brain stimulation target for treatment resistant depression: A review of published data.
Prog Neuropsychopharmacol Biol Psychiatry. 2015 Apr 3;58:59-70. doi: 10.1016/j.pnpbp.2014.12.003. Epub 2014 Dec 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验