Trevathan James K, Yousefi Ali, Park Hyung Ook, Bartoletta John J, Ludwig Kip A, Lee Kendall H, Lujan J Luis
Department of Neurologic Surgery, Massachusetts General Hospital and Harvard Medical School , 25 Shattuck Street, Boston, Massachusetts 02115, United States.
ACS Chem Neurosci. 2017 Feb 15;8(2):394-410. doi: 10.1021/acschemneuro.6b00319. Epub 2017 Feb 6.
Neurochemical changes evoked by electrical stimulation of the nervous system have been linked to both therapeutic and undesired effects of neuromodulation therapies used to treat obsessive-compulsive disorder, depression, epilepsy, Parkinson's disease, stroke, hypertension, tinnitus, and many other indications. In fact, interest in better understanding the role of neurochemical signaling in neuromodulation therapies has been a focus of recent government- and industry-sponsored programs whose ultimate goal is to usher in an era of personalized medicine by creating neuromodulation therapies that respond to real-time changes in patient status. A key element to achieving these precision therapeutic interventions is the development of mathematical modeling approaches capable of describing the nonlinear transfer function between neuromodulation parameters and evoked neurochemical changes. Here, we propose two computational modeling frameworks, based on artificial neural networks (ANNs) and Volterra kernels, that can characterize the input/output transfer functions of stimulation-evoked neurochemical release. We evaluate the ability of these modeling frameworks to characterize subject-specific neurochemical kinetics by accurately describing stimulation-evoked dopamine release across rodent (R = 0.83 Volterra kernel, R = 0.86 ANN), swine (R = 0.90 Volterra kernel, R = 0.93 ANN), and non-human primate (R = 0.98 Volterra kernel, R = 0.96 ANN) models of brain stimulation. Ultimately, these models will not only improve understanding of neurochemical signaling in healthy and diseased brains but also facilitate the development of neuromodulation strategies capable of controlling neurochemical release via closed-loop strategies.
神经系统电刺激引发的神经化学变化与用于治疗强迫症、抑郁症、癫痫、帕金森病、中风、高血压、耳鸣及许多其他病症的神经调节疗法的治疗效果和不良影响均有关联。事实上,深入了解神经化学信号在神经调节疗法中的作用已成为近期政府和行业资助项目的重点,这些项目的最终目标是通过创建能响应患者状态实时变化的神经调节疗法,开创个性化医疗的时代。实现这些精准治疗干预的一个关键要素是开发能够描述神经调节参数与诱发的神经化学变化之间非线性传递函数的数学建模方法。在此,我们提出了基于人工神经网络(ANN)和沃尔泰拉核的两个计算建模框架,它们能够表征刺激诱发的神经化学释放的输入/输出传递函数。我们通过准确描述啮齿动物(沃尔泰拉核的R = 0.83,人工神经网络的R = 0.86)、猪(沃尔泰拉核的R = 0.90,人工神经网络的R = 0.93)和非人类灵长类动物(沃尔泰拉核的R = 0.98,人工神经网络的R = 0.96)脑刺激模型中刺激诱发的多巴胺释放,来评估这些建模框架表征特定个体神经化学动力学的能力。最终,这些模型不仅将增进对健康和患病大脑中神经化学信号的理解,还将促进能够通过闭环策略控制神经化学释放的神经调节策略的开发。