Glenwright Amy J, Pothula Karunakar R, Bhamidimarri Satya P, Chorev Dror S, Baslé Arnaud, Firbank Susan J, Zheng Hongjun, Robinson Carol V, Winterhalter Mathias, Kleinekathöfer Ulrich, Bolam David N, van den Berg Bert
Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
Jacobs University Bremen, Department of Physics & Earth Sciences, 28759 Bremen, Germany.
Nature. 2017 Jan 19;541(7637):407-411. doi: 10.1038/nature20828. Epub 2017 Jan 11.
The human large intestine is populated by a high density of microorganisms, collectively termed the colonic microbiota, which has an important role in human health and nutrition. The survival of microbiota members from the dominant Gram-negative phylum Bacteroidetes depends on their ability to degrade dietary glycans that cannot be metabolized by the host. The genes encoding proteins involved in the degradation of specific glycans are organized into co-regulated polysaccharide utilization loci, with the archetypal locus sus (for starch utilisation system) encoding seven proteins, SusA-SusG. Glycan degradation mainly occurs intracellularly and depends on the import of oligosaccharides by an outer membrane protein complex composed of an extracellular SusD-like lipoprotein and an integral membrane SusC-like TonB-dependent transporter. The presence of the partner SusD-like lipoprotein is the major feature that distinguishes SusC-like proteins from previously characterized TonB-dependent transporters. Many sequenced gut Bacteroides spp. encode over 100 SusCD pairs, of which the majority have unknown functions and substrate specificities. The mechanism by which extracellular substrate binding by SusD proteins is coupled to outer membrane passage through their cognate SusC transporter is unknown. Here we present X-ray crystal structures of two functionally distinct SusCD complexes purified from Bacteroides thetaiotaomicron and derive a general model for substrate translocation. The SusC transporters form homodimers, with each β-barrel protomer tightly capped by SusD. Ligands are bound at the SusC-SusD interface in a large solvent-excluded cavity. Molecular dynamics simulations and single-channel electrophysiology reveal a 'pedal bin' mechanism, in which SusD moves away from SusC in a hinge-like fashion in the absence of ligand to expose the substrate-binding site to the extracellular milieu. These data provide mechanistic insights into outer membrane nutrient import by members of the microbiota, an area of major importance for understanding human-microbiota symbiosis.
人类大肠中栖息着高密度的微生物,统称为结肠微生物群,其在人类健康和营养方面发挥着重要作用。来自占主导地位的革兰氏阴性菌门拟杆菌的微生物群成员的存活取决于它们降解宿主无法代谢的膳食聚糖的能力。编码参与特定聚糖降解的蛋白质的基因被组织成共同调控的多糖利用位点,典型的位点sus(用于淀粉利用系统)编码七种蛋白质,即SusA - SusG。聚糖降解主要发生在细胞内,并且依赖于由细胞外SusD样脂蛋白和整合膜SusC样TonB依赖性转运蛋白组成的外膜蛋白复合物对寡糖的导入。伴侣SusD样脂蛋白的存在是将SusC样蛋白与先前表征的TonB依赖性转运蛋白区分开来的主要特征。许多已测序的肠道拟杆菌属物种编码超过100对SusCD,其中大多数具有未知功能和底物特异性。SusD蛋白在细胞外与底物结合并通过其同源SusC转运蛋白在外膜中传递的机制尚不清楚。在这里,我们展示了从嗜热栖热放线菌中纯化的两种功能不同的SusCD复合物的X射线晶体结构,并推导了底物转运的通用模型。SusC转运蛋白形成同型二聚体,每个β桶状原体被SusD紧密覆盖。配体在SusC - SusD界面的一个大的溶剂排除腔内结合。分子动力学模拟和单通道电生理学揭示了一种“踏板箱”机制,其中在没有配体的情况下,SusD以铰链样方式从SusC移开,将底物结合位点暴露于细胞外环境。这些数据为微生物群成员的外膜营养物质导入提供了机制见解,这是理解人类 - 微生物群共生关系的一个重要领域。