Suppr超能文献

人类肠道微生物群主要成员获取营养的结构基础。

Structural basis for nutrient acquisition by dominant members of the human gut microbiota.

作者信息

Glenwright Amy J, Pothula Karunakar R, Bhamidimarri Satya P, Chorev Dror S, Baslé Arnaud, Firbank Susan J, Zheng Hongjun, Robinson Carol V, Winterhalter Mathias, Kleinekathöfer Ulrich, Bolam David N, van den Berg Bert

机构信息

Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.

Jacobs University Bremen, Department of Physics & Earth Sciences, 28759 Bremen, Germany.

出版信息

Nature. 2017 Jan 19;541(7637):407-411. doi: 10.1038/nature20828. Epub 2017 Jan 11.

Abstract

The human large intestine is populated by a high density of microorganisms, collectively termed the colonic microbiota, which has an important role in human health and nutrition. The survival of microbiota members from the dominant Gram-negative phylum Bacteroidetes depends on their ability to degrade dietary glycans that cannot be metabolized by the host. The genes encoding proteins involved in the degradation of specific glycans are organized into co-regulated polysaccharide utilization loci, with the archetypal locus sus (for starch utilisation system) encoding seven proteins, SusA-SusG. Glycan degradation mainly occurs intracellularly and depends on the import of oligosaccharides by an outer membrane protein complex composed of an extracellular SusD-like lipoprotein and an integral membrane SusC-like TonB-dependent transporter. The presence of the partner SusD-like lipoprotein is the major feature that distinguishes SusC-like proteins from previously characterized TonB-dependent transporters. Many sequenced gut Bacteroides spp. encode over 100 SusCD pairs, of which the majority have unknown functions and substrate specificities. The mechanism by which extracellular substrate binding by SusD proteins is coupled to outer membrane passage through their cognate SusC transporter is unknown. Here we present X-ray crystal structures of two functionally distinct SusCD complexes purified from Bacteroides thetaiotaomicron and derive a general model for substrate translocation. The SusC transporters form homodimers, with each β-barrel protomer tightly capped by SusD. Ligands are bound at the SusC-SusD interface in a large solvent-excluded cavity. Molecular dynamics simulations and single-channel electrophysiology reveal a 'pedal bin' mechanism, in which SusD moves away from SusC in a hinge-like fashion in the absence of ligand to expose the substrate-binding site to the extracellular milieu. These data provide mechanistic insights into outer membrane nutrient import by members of the microbiota, an area of major importance for understanding human-microbiota symbiosis.

摘要

人类大肠中栖息着高密度的微生物,统称为结肠微生物群,其在人类健康和营养方面发挥着重要作用。来自占主导地位的革兰氏阴性菌门拟杆菌的微生物群成员的存活取决于它们降解宿主无法代谢的膳食聚糖的能力。编码参与特定聚糖降解的蛋白质的基因被组织成共同调控的多糖利用位点,典型的位点sus(用于淀粉利用系统)编码七种蛋白质,即SusA - SusG。聚糖降解主要发生在细胞内,并且依赖于由细胞外SusD样脂蛋白和整合膜SusC样TonB依赖性转运蛋白组成的外膜蛋白复合物对寡糖的导入。伴侣SusD样脂蛋白的存在是将SusC样蛋白与先前表征的TonB依赖性转运蛋白区分开来的主要特征。许多已测序的肠道拟杆菌属物种编码超过100对SusCD,其中大多数具有未知功能和底物特异性。SusD蛋白在细胞外与底物结合并通过其同源SusC转运蛋白在外膜中传递的机制尚不清楚。在这里,我们展示了从嗜热栖热放线菌中纯化的两种功能不同的SusCD复合物的X射线晶体结构,并推导了底物转运的通用模型。SusC转运蛋白形成同型二聚体,每个β桶状原体被SusD紧密覆盖。配体在SusC - SusD界面的一个大的溶剂排除腔内结合。分子动力学模拟和单通道电生理学揭示了一种“踏板箱”机制,其中在没有配体的情况下,SusD以铰链样方式从SusC移开,将底物结合位点暴露于细胞外环境。这些数据为微生物群成员的外膜营养物质导入提供了机制见解,这是理解人类 - 微生物群共生关系的一个重要领域。

相似文献

1
Structural basis for nutrient acquisition by dominant members of the human gut microbiota.
Nature. 2017 Jan 19;541(7637):407-411. doi: 10.1038/nature20828. Epub 2017 Jan 11.
3
TonB-dependent transport by the gut microbiota: novel aspects of an old problem.
Curr Opin Struct Biol. 2018 Aug;51:35-43. doi: 10.1016/j.sbi.2018.03.001. Epub 2018 Mar 15.
5
Insights into SusCD-mediated glycan import by a prominent gut symbiont.
Nat Commun. 2021 Jan 4;12(1):44. doi: 10.1038/s41467-020-20285-y.
8
SusE facilitates starch uptake independent of starch binding in B. thetaiotaomicron.
Mol Microbiol. 2018 Jun;108(5):551-566. doi: 10.1111/mmi.13949. Epub 2018 Apr 14.

引用本文的文献

1
Structural basis of iron piracy by human gut .
bioRxiv. 2025 Aug 24:2024.04.15.589501. doi: 10.1101/2024.04.15.589501.
3
SGBP-B-like bimodular cellulose-binding protein CHU_1279 is essential for cellulose utilization by .
Appl Environ Microbiol. 2025 Apr 23;91(4):e0247124. doi: 10.1128/aem.02471-24. Epub 2025 Mar 25.
4
Exploring the Genetic and Functional Diversity of Survival Factor RagAB.
Int J Mol Sci. 2025 Jan 26;26(3):1073. doi: 10.3390/ijms26031073.
5
Substrate Uptake by TonB-Dependent Outer Membrane Transporters.
Mol Microbiol. 2024 Dec;122(6):929-947. doi: 10.1111/mmi.15332. Epub 2024 Dec 3.
6
Structure-dependent stimulation of gut bacteria by arabinoxylo-oligosaccharides (AXOS): a review.
Gut Microbes. 2024 Jan-Dec;16(1):2430419. doi: 10.1080/19490976.2024.2430419. Epub 2024 Nov 29.
9
Biochemical characterization of a SusD-like protein involved in β-1,3-glucan utilization by an uncultured cow rumen .
mSphere. 2024 Aug 28;9(8):e0027824. doi: 10.1128/msphere.00278-24. Epub 2024 Jul 16.
10
Metagenome-derived SusD-homologs affiliated with Bacteroidota bind to synthetic polymers.
Appl Environ Microbiol. 2024 Jul 24;90(7):e0093324. doi: 10.1128/aem.00933-24. Epub 2024 Jul 2.

本文引用的文献

1
Structural insight into the role of the Ton complex in energy transduction.
Nature. 2016 Oct 6;538(7623):60-65. doi: 10.1038/nature19757. Epub 2016 Sep 21.
2
Simulations of outer membrane channels and their permeability.
Biochim Biophys Acta. 2016 Jul;1858(7 Pt B):1760-71. doi: 10.1016/j.bbamem.2015.12.020. Epub 2015 Dec 23.
3
The gut microbiota and host health: a new clinical frontier.
Gut. 2016 Feb;65(2):330-9. doi: 10.1136/gutjnl-2015-309990. Epub 2015 Sep 2.
4
Glycan complexity dictates microbial resource allocation in the large intestine.
Nat Commun. 2015 Jun 26;6:7481. doi: 10.1038/ncomms8481.
5
Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism.
Nature. 2015 Jan 8;517(7533):165-169. doi: 10.1038/nature13995.
6
Quorum sensing peptides mediating interspecies bacterial cell death as a novel class of antimicrobial agents.
Curr Opin Microbiol. 2014 Oct;21:22-7. doi: 10.1016/j.mib.2014.09.001. Epub 2014 Sep 20.
7
A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes.
Nature. 2014 Feb 27;506(7489):498-502. doi: 10.1038/nature12907. Epub 2014 Jan 19.
8
Energy-dependent motion of TonB in the Gram-negative bacterial inner membrane.
Proc Natl Acad Sci U S A. 2013 Jul 9;110(28):11553-8. doi: 10.1073/pnas.1304243110. Epub 2013 Jun 24.
9
How good are my data and what is the resolution?
Acta Crystallogr D Biol Crystallogr. 2013 Jul;69(Pt 7):1204-14. doi: 10.1107/S0907444913000061. Epub 2013 Jun 13.
10
Phylum-wide general protein O-glycosylation system of the Bacteroidetes.
Mol Microbiol. 2013 May;88(4):772-83. doi: 10.1111/mmi.12220. Epub 2013 Apr 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验