1] Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91 Stockholm, Sweden [2].
1] Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA [2].
Nature. 2014 Feb 27;506(7489):498-502. doi: 10.1038/nature12907. Epub 2014 Jan 19.
A well-balanced human diet includes a significant intake of non-starch polysaccharides, collectively termed 'dietary fibre', from the cell walls of diverse fruits and vegetables. Owing to the paucity of alimentary enzymes encoded by the human genome, our ability to derive energy from dietary fibre depends on the saccharification and fermentation of complex carbohydrates by the massive microbial community residing in our distal gut. The xyloglucans (XyGs) are a ubiquitous family of highly branched plant cell wall polysaccharides whose mechanism(s) of degradation in the human gut and consequent importance in nutrition have been unclear. Here we demonstrate that a single, complex gene locus in Bacteroides ovatus confers XyG catabolism in this common colonic symbiont. Through targeted gene disruption, biochemical analysis of all predicted glycoside hydrolases and carbohydrate-binding proteins, and three-dimensional structural determination of the vanguard endo-xyloglucanase, we reveal the molecular mechanisms through which XyGs are hydrolysed to component monosaccharides for further metabolism. We also observe that orthologous XyG utilization loci (XyGULs) serve as genetic markers of XyG catabolism in Bacteroidetes, that XyGULs are restricted to a limited number of phylogenetically diverse strains, and that XyGULs are ubiquitous in surveyed human metagenomes. Our findings reveal that the metabolism of even highly abundant components of dietary fibre may be mediated by niche species, which has immediate fundamental and practical implications for gut symbiont population ecology in the context of human diet, nutrition and health.
人类饮食的均衡需要从不同水果和蔬菜的细胞壁中摄取大量的非淀粉多糖,这些多糖统称为“膳食纤维”。由于人类基因组编码的消化酶种类有限,我们从膳食纤维中获取能量的能力取决于居住在我们远端肠道中的庞大微生物群落对复杂碳水化合物的糖化和发酵。木葡聚糖(XyGs)是一种广泛存在的高度分支的植物细胞壁多糖,其在人类肠道中的降解机制及其在营养方面的重要性一直不清楚。在这里,我们证明了卵形拟杆菌(Bacteroides ovatus)中的一个单一的、复杂的基因座赋予了这种常见的结肠共生菌对 XyG 的代谢能力。通过靶向基因敲除、对所有预测糖苷水解酶和碳水化合物结合蛋白的生化分析以及前沿内切木葡聚糖酶的三维结构测定,我们揭示了 XyGs 被水解为用于进一步代谢的单糖的分子机制。我们还观察到,同源 XyG 利用基因座(XyGULs)是拟杆菌门中 XyG 代谢的遗传标记,XyGULs 局限于少数具有不同进化背景的菌株,并且 XyGULs 在调查的人类宏基因组中普遍存在。我们的研究结果表明,膳食纤维中即使是高度丰富的成分的代谢也可能是由小生境物种介导的,这对人类饮食、营养和健康背景下肠道共生体种群生态学具有直接的基础和实际意义。