Suppr超能文献

基于具有花状MoS结构的分级茎状碳网络的混合超级电容器电极的形态工程

Morphology Engineering of Hybrid Supercapacitor Electrodes from Hierarchical Stem-like Carbon Networks with Flower-like MoS Structures.

作者信息

Ji Jaehoon, Park Sewon, Choi Jong Hyun

机构信息

School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States.

出版信息

ACS Omega. 2023 May 1;8(19):16833-16841. doi: 10.1021/acsomega.3c00445. eCollection 2023 May 16.

Abstract

There is a critical need to develop high-performance supercapacitors that can complement and even rival batteries for energy storage. This work introduces a strategy to drastically enhance the energy storage performance of a supercapacitor by engineering electrode morphologies with ternary composites offering distinct benefits for the energy storage application. The electrodes were fabricated with conductive networks of carbon nanotubes (CNTs) coated with a zeolitic imidazole framework (ZIF) for high ion diffusivity and ion-accumulating molybdenum disulfide (MoS) with various morphologies. These include flower-like (fMoS), stacked-plate (pMoS), and exfoliated-flake (eMoS) structures from topochemical synthesis. CNT-ZIF-fMoS demonstrates an excellent energy density, reaching almost 80 Wh/kg, and a maximum power density of approximately 3000 W/kg in a half-cell. This is far superior to the electrodes containing pMoS and eMoS and attributed to the increased surface area and the faradaic reactivity offered by fMoS. Additionally, the CNT-ZIF-fMoS electrode demonstrates exceptional stability with an ∼78% of capacitance retention over 10,000 cycles. This work suggests that the electrode morphologies can dominate the energy storage behaviors and that the heteromaterial approach may be crucial in designing next-generation supercapacitors.

摘要

迫切需要开发高性能超级电容器,以补充甚至在能量存储方面与电池相媲美。这项工作介绍了一种策略,通过设计电极形态,利用三元复合材料为能量存储应用带来独特优势,从而大幅提高超级电容器的能量存储性能。电极由涂有沸石咪唑框架(ZIF)的碳纳米管(CNT)导电网络制成,以实现高离子扩散率,并含有具有各种形态的离子积累二硫化钼(MoS)。这些形态包括通过拓扑化学合成得到的花状(fMoS)、堆叠板状(pMoS)和片状(eMoS)结构。CNT-ZIF-fMoS在半电池中表现出优异的能量密度,几乎达到80 Wh/kg,最大功率密度约为3000 W/kg。这远远优于含有pMoS和eMoS的电极,这归因于fMoS提供的表面积增加和法拉第反应活性。此外,CNT-ZIF-fMoS电极表现出卓越的稳定性,在10000次循环中电容保持率约为78%。这项工作表明电极形态可以主导能量存储行为,并且异质材料方法在设计下一代超级电容器中可能至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4a4/10193431/c285f4fdd5de/ao3c00445_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验