Photonics Group, Institute of Physics, Lodz University of Technology, Wólczańska 219, 90-924 Łódź, Poland.
Institute of Solid State Physics and Center of Nanophotonics, Technische Universität Berlin, Hardenbergstraße 36, D-10623 Berlin, Federal Republic of Germany.
Sci Rep. 2017 Jan 12;7:40348. doi: 10.1038/srep40348.
Semiconductor-metal subwavelength grating (SMSG) can serve a dual purpose in vertical-cavity surface-emitting lasers (VCSELs), as both optical coupler and current injector. SMSGs provide optical as well as lateral current confinement, eliminating the need for ring contacts and lateral build-in optical and current confinement, allowing their implementation on arbitrarily large surfaces. Using an SMSG as the top mirror enables fabrication of monolithic VCSELs from any type of semiconductor crystal. The construction of VCSELs with SMSGs requires significantly less p-type material, in comparison to conventional VCSELs. In this paper, using a three-dimensional, fully vectorial optical model, we analyse the properties of the stand-alone SMSG in a number of semiconductor materials for a broad range of wavelengths. Integrating the optical model with thermal and electrical numerical models, we then simulate the threshold operation of an exemplary SMSG VCSEL.
半导体-金属亚波长光栅(SMSG)在垂直腔面发射激光器(VCSEL)中具有双重作用,既可以作为光耦合器,也可以作为电流注入器。SMSG 提供光学和横向电流限制,无需环形接触和横向内置光学和电流限制,从而可以在任意大的表面上实现其功能。使用 SMSG 作为顶镜可以从任何类型的半导体晶体制造单片 VCSEL。与传统 VCSEL 相比,使用 SMSG 构建 VCSEL 所需的 p 型材料要少得多。在本文中,我们使用三维全矢量光学模型,在多种半导体材料中分析了独立 SMSG 在宽波长范围内的特性。然后,我们将光学模型与热和电数值模型集成,模拟示例 SMSG VCSEL 的阈值操作。