Suppr超能文献

溶酶体腺苷对瞬时受体电位通道黏脂素-1(TRPML1)的抑制作用与重症联合免疫缺陷病有关。

Inhibition of Transient Receptor Potential Channel Mucolipin-1 (TRPML1) by Lysosomal Adenosine Involved in Severe Combined Immunodeficiency Diseases.

作者信息

Zhong Xi Zoë, Zou Yuanjie, Sun Xue, Dong Gaofeng, Cao Qi, Pandey Aditya, Rainey Jan K, Zhu Xiaojuan, Dong Xian-Ping

机构信息

Departments of Physiology and Biophysics.

Departments of Physiology and Biophysics; Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, 130024 Jilin, China.

出版信息

J Biol Chem. 2017 Feb 24;292(8):3445-3455. doi: 10.1074/jbc.M116.743963. Epub 2017 Jan 13.

Abstract

Impaired adenosine homeostasis has been associated with numerous human diseases. Lysosomes are referred to as the cellular recycling centers that generate adenosine by breaking down nucleic acids or ATP. Recent studies have suggested that lysosomal adenosine overload causes lysosome defects that phenocopy patients with mutations in transient receptor potential channel mucolipin-1 (TRPML1), a lysosomal Ca channel, suggesting that lysosomal adenosine overload may impair TRPML1 and then lead to subsequent lysosomal dysfunction. In this study, we demonstrate that lysosomal adenosine is elevated by deleting adenosine deaminase (ADA), an enzyme responsible for adenosine degradation. We also show that lysosomal adenosine accumulation inhibits TRPML1, which is rescued by overexpressing ENT3, the adenosine transporter situated in the lysosome membrane. Moreover, ADA deficiency results in lysosome enlargement, alkalinization, and dysfunction. These are rescued by activating TRPML1. Importantly, ADA-deficient B-lymphocytes are more vulnerable to oxidative stress, and this was rescued by TRPML1 activation. Our data suggest that lysosomal adenosine accumulation impairs lysosome function by inhibiting TRPML1 and subsequently leads to cell death in B-lymphocytes. Activating TRPML1 could be a new therapeutic strategy for those diseases.

摘要

腺苷稳态受损与多种人类疾病相关。溶酶体被称为细胞回收中心,通过分解核酸或ATP产生腺苷。最近的研究表明,溶酶体腺苷过载会导致溶酶体缺陷,其表现类似于瞬时受体电位通道黏脂素-1(TRPML1,一种溶酶体钙通道)发生突变的患者,这表明溶酶体腺苷过载可能会损害TRPML1,进而导致随后的溶酶体功能障碍。在本研究中,我们证明通过缺失腺苷脱氨酶(ADA,一种负责腺苷降解的酶)可使溶酶体腺苷水平升高。我们还表明,溶酶体腺苷积累会抑制TRPML1,而过表达位于溶酶体膜上的腺苷转运体ENT3可使其恢复。此外,ADA缺乏会导致溶酶体增大、碱化和功能障碍。通过激活TRPML1可使其恢复。重要的是,ADA缺陷的B淋巴细胞对氧化应激更敏感,而TRPML1激活可使其恢复。我们的数据表明,溶酶体腺苷积累通过抑制TRPML1损害溶酶体功能,随后导致B淋巴细胞死亡。激活TRPML1可能是针对这些疾病的一种新的治疗策略。

相似文献

引用本文的文献

5
The ion channels of endomembranes.内质网膜的离子通道。
Physiol Rev. 2024 Jul 1;104(3):1335-1385. doi: 10.1152/physrev.00025.2023. Epub 2024 Mar 7.
7
Lysosomal Potassium Channels.溶酶体钾通道
Handb Exp Pharmacol. 2023;278:127-152. doi: 10.1007/164_2022_600.
9
Loss of PIKfyve drives the spongiform degeneration in prion diseases.PIKfyve 的缺失导致朊病毒病中的海绵状变性。
EMBO Mol Med. 2021 Sep 7;13(9):e14714. doi: 10.15252/emmm.202114714. Epub 2021 Jul 22.

本文引用的文献

10
Lysosomal cell death at a glance.溶酶体细胞死亡速览。
J Cell Sci. 2013 May 1;126(Pt 9):1905-12. doi: 10.1242/jcs.091181.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验