Suppr超能文献

回归收缩与神经模型在预测400米跨栏比赛结果中的应用

Regression shrinkage and neural models in predicting the results of 400-metres hurdles races.

作者信息

Przednowek K, Iskra J, Maszczyk A, Nawrocka M

机构信息

Faculty of Physical Education, University of Rzeszow, Poland.

Faculty of Physical Education and Physiotherapy, Opole University of Technology, Opole, Poland.

出版信息

Biol Sport. 2016 Dec;33(4):415-421. doi: 10.5604/20831862.1224463. Epub 2016 Nov 10.

Abstract

This study presents the application of regression shrinkage and artificial neural networks in predicting the results of 400-metres hurdles races. The regression models predict the results for suggested training loads in the selected three-month training period. The material of the research was based on training data of 21 Polish hurdlers from the Polish National Athletics Team Association. The athletes were characterized by a high level of performance. To assess the predictive ability of the constructed models a method of leave-one-out cross-validation was used. The analysis showed that the method generating the smallest prediction error was the LASSO regression extended by quadratic terms. The optimal model generated the prediction error of 0.59 s. Otherwise the optimal set of input variables (by reducing 8 of the 27 predictors) was defined. The results obtained justify the use of regression shrinkage in predicting sports outcomes. The resulting model can be used as a tool to assist the coach in planning training loads in a selected training period.

摘要

本研究介绍了回归收缩法和人工神经网络在预测400米跨栏比赛结果中的应用。回归模型预测了选定的三个月训练期内建议训练负荷的结果。研究材料基于波兰国家田径队协会21名波兰跨栏运动员的训练数据。这些运动员具有高水平的表现。为了评估所构建模型的预测能力,使用了留一法交叉验证方法。分析表明,产生最小预测误差的方法是扩展了二次项的套索回归。最优模型产生的预测误差为0.59秒。此外,还定义了最优输入变量集(通过减少27个预测变量中的8个)。所得结果证明了回归收缩法在预测运动成绩方面的应用价值。所得模型可作为一种工具,协助教练在选定的训练期内规划训练负荷。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7f6/5143778/bc4755e2f201/JBS-33-1224463-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验