Suppr超能文献

超越分类:使用卷积神经网络进行稳健细胞检测的结构化回归

Beyond Classification: Structured Regression for Robust Cell Detection Using Convolutional Neural Network.

作者信息

Xie Yuanpu, Xing Fuyong, Kong Xiangfei, Su Hai, Yang Lin

机构信息

J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, FL 32611, USA.

Department of Electrical and Computer Engineering, University of Florida, FL 32611, USA.

出版信息

Med Image Comput Comput Assist Interv. 2015 Oct;9351:358-365. doi: 10.1007/978-3-319-24574-4_43. Epub 2015 Nov 18.

Abstract

Robust cell detection serves as a critical prerequisite for many biomedical image analysis applications. In this paper, we present a novel convolutional neural network (CNN) based structured regression model, which is shown to be able to handle touching cells, inhomogeneous background noises, and large variations in sizes and shapes. The proposed method only requires a few training images with weak annotations (just one click near the center of the object). Given an input image patch, instead of providing a single class label like many traditional methods, our algorithm will generate the structured outputs (referred to as proximity patches). These proximity patches, which exhibit higher values for pixels near cell centers, will then be gathered from all testing image patches and fused to obtain the final proximity map, where the maximum positions indicate the cell centroids. The algorithm is tested using three data sets representing different image stains and modalities. The comparative experiments demonstrate the superior performance of this novel method over existing state-of-the-art.

摘要

强大的细胞检测是许多生物医学图像分析应用的关键前提。在本文中,我们提出了一种基于卷积神经网络(CNN)的新型结构化回归模型,该模型被证明能够处理相互接触的细胞、不均匀的背景噪声以及大小和形状的巨大变化。所提出的方法仅需要少量带有弱注释的训练图像(只需在对象中心附近点击一下)。给定一个输入图像块,我们的算法不会像许多传统方法那样提供单个类别标签,而是会生成结构化输出(称为邻近块)。这些邻近块在细胞中心附近的像素处具有较高的值,然后将从所有测试图像块中收集并融合,以获得最终的邻近图,其中最大值位置表示细胞质心。该算法使用代表不同图像染色和模态的三个数据集进行了测试。对比实验证明了这种新方法相对于现有最先进方法的优越性能。

相似文献

2
Efficient and robust cell detection: A structured regression approach.高效稳健的细胞检测:一种结构化回归方法。
Med Image Anal. 2018 Feb;44:245-254. doi: 10.1016/j.media.2017.07.003. Epub 2017 Jul 26.
5
Deep Voting: A Robust Approach Toward Nucleus Localization in Microscopy Images.深度投票:一种用于显微镜图像中细胞核定位的稳健方法。
Med Image Comput Comput Assist Interv. 2015 Oct;9351:374-382. doi: 10.1007/978-3-319-24574-4_45. Epub 2015 Nov 18.
10
Image generation by GAN and style transfer for agar plate image segmentation.基于 GAN 和风格迁移的琼脂平板图像分割的图像生成。
Comput Methods Programs Biomed. 2020 Feb;184:105268. doi: 10.1016/j.cmpb.2019.105268. Epub 2019 Dec 17.

引用本文的文献

3

本文引用的文献

5
Learning to detect cells using non-overlapping extremal regions.学习使用非重叠极值区域检测细胞。
Med Image Comput Comput Assist Interv. 2012;15(Pt 1):348-56. doi: 10.1007/978-3-642-33415-3_43.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验