Department of Biomedical Engineering, University of Florida, FL 32611 USA.
Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, 32611, USA.
Med Image Anal. 2018 Feb;44:245-254. doi: 10.1016/j.media.2017.07.003. Epub 2017 Jul 26.
Efficient and robust cell detection serves as a critical prerequisite for many subsequent biomedical image analysis methods and computer-aided diagnosis (CAD). It remains a challenging task due to touching cells, inhomogeneous background noise, and large variations in cell sizes and shapes. In addition, the ever-increasing amount of available datasets and the high resolution of whole-slice scanned images pose a further demand for efficient processing algorithms. In this paper, we present a novel structured regression model based on a proposed fully residual convolutional neural network for efficient cell detection. For each testing image, our model learns to produce a dense proximity map that exhibits higher responses at locations near cell centers. Our method only requires a few training images with weak annotations (just one dot indicating the cell centroids). We have extensively evaluated our method using four different datasets, covering different microscopy staining methods (e.g., H & E or Ki-67 staining) or image acquisition techniques (e.g., bright-filed image or phase contrast). Experimental results demonstrate the superiority of our method over existing state of the art methods in terms of both detection accuracy and running time.
高效且鲁棒的细胞检测是许多后续生物医学图像分析方法和计算机辅助诊断(CAD)的关键前提。由于细胞相互接触、不均匀的背景噪声以及细胞大小和形状的巨大差异,这仍然是一项具有挑战性的任务。此外,可用数据集的数量不断增加以及全切片扫描图像的高分辨率对高效处理算法提出了进一步的要求。在本文中,我们提出了一种新颖的基于全残差卷积神经网络的结构化回归模型,用于高效的细胞检测。对于每个测试图像,我们的模型学习生成一个密集的接近度图,该图在细胞中心附近的位置表现出更高的响应。我们的方法只需要少量带有弱注释的训练图像(只需一个点表示细胞质心)。我们使用四个不同的数据集对我们的方法进行了广泛的评估,涵盖了不同的显微镜染色方法(例如 H&E 或 Ki-67 染色)或图像采集技术(例如明场图像或相差)。实验结果表明,我们的方法在检测精度和运行时间方面均优于现有最先进的方法。