Suppr超能文献

高效稳健的细胞检测:一种结构化回归方法。

Efficient and robust cell detection: A structured regression approach.

机构信息

Department of Biomedical Engineering, University of Florida, FL 32611 USA.

Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, 32611, USA.

出版信息

Med Image Anal. 2018 Feb;44:245-254. doi: 10.1016/j.media.2017.07.003. Epub 2017 Jul 26.

Abstract

Efficient and robust cell detection serves as a critical prerequisite for many subsequent biomedical image analysis methods and computer-aided diagnosis (CAD). It remains a challenging task due to touching cells, inhomogeneous background noise, and large variations in cell sizes and shapes. In addition, the ever-increasing amount of available datasets and the high resolution of whole-slice scanned images pose a further demand for efficient processing algorithms. In this paper, we present a novel structured regression model based on a proposed fully residual convolutional neural network for efficient cell detection. For each testing image, our model learns to produce a dense proximity map that exhibits higher responses at locations near cell centers. Our method only requires a few training images with weak annotations (just one dot indicating the cell centroids). We have extensively evaluated our method using four different datasets, covering different microscopy staining methods (e.g., H & E or Ki-67 staining) or image acquisition techniques (e.g., bright-filed image or phase contrast). Experimental results demonstrate the superiority of our method over existing state of the art methods in terms of both detection accuracy and running time.

摘要

高效且鲁棒的细胞检测是许多后续生物医学图像分析方法和计算机辅助诊断(CAD)的关键前提。由于细胞相互接触、不均匀的背景噪声以及细胞大小和形状的巨大差异,这仍然是一项具有挑战性的任务。此外,可用数据集的数量不断增加以及全切片扫描图像的高分辨率对高效处理算法提出了进一步的要求。在本文中,我们提出了一种新颖的基于全残差卷积神经网络的结构化回归模型,用于高效的细胞检测。对于每个测试图像,我们的模型学习生成一个密集的接近度图,该图在细胞中心附近的位置表现出更高的响应。我们的方法只需要少量带有弱注释的训练图像(只需一个点表示细胞质心)。我们使用四个不同的数据集对我们的方法进行了广泛的评估,涵盖了不同的显微镜染色方法(例如 H&E 或 Ki-67 染色)或图像采集技术(例如明场图像或相差)。实验结果表明,我们的方法在检测精度和运行时间方面均优于现有最先进的方法。

相似文献

1
Efficient and robust cell detection: A structured regression approach.高效稳健的细胞检测:一种结构化回归方法。
Med Image Anal. 2018 Feb;44:245-254. doi: 10.1016/j.media.2017.07.003. Epub 2017 Jul 26.
6
Deep Voting: A Robust Approach Toward Nucleus Localization in Microscopy Images.深度投票:一种用于显微镜图像中细胞核定位的稳健方法。
Med Image Comput Comput Assist Interv. 2015 Oct;9351:374-382. doi: 10.1007/978-3-319-24574-4_45. Epub 2015 Nov 18.

引用本文的文献

5
10
Low-Resource Adversarial Domain Adaptation for Cross-Modality Nucleus Detection.用于跨模态细胞核检测的低资源对抗域适应
Med Image Comput Comput Assist Interv. 2022 Sep;13437:639-649. doi: 10.1007/978-3-031-16449-1_61. Epub 2022 Sep 17.

本文引用的文献

2
Residual Deconvolutional Networks for Brain Electron Microscopy Image Segmentation.残差去卷积网络在脑电镜图像分割中的应用。
IEEE Trans Med Imaging. 2017 Feb;36(2):447-456. doi: 10.1109/TMI.2016.2613019. Epub 2016 Sep 23.
4
Deep Voting: A Robust Approach Toward Nucleus Localization in Microscopy Images.深度投票:一种用于显微镜图像中细胞核定位的稳健方法。
Med Image Comput Comput Assist Interv. 2015 Oct;9351:374-382. doi: 10.1007/978-3-319-24574-4_45. Epub 2015 Nov 18.
6
Fully Convolutional Networks for Semantic Segmentation.全卷积网络用于语义分割。
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651. doi: 10.1109/TPAMI.2016.2572683. Epub 2016 May 24.
9
An Automatic Learning-Based Framework for Robust Nucleus Segmentation.一种基于自动学习的稳健细胞核分割框架。
IEEE Trans Med Imaging. 2016 Feb;35(2):550-66. doi: 10.1109/TMI.2015.2481436. Epub 2015 Sep 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验