Suppr超能文献

用于肌肉束膜分割的空间发条循环神经网络

Spatial Clockwork Recurrent Neural Network for Muscle Perimysium Segmentation.

作者信息

Xie Yuanpu, Zhang Zizhao, Sapkota Manish, Yang Lin

机构信息

J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, FL 32611, USA.

Department of Computer and Information Science and Engineering, University of Florida, FL 32611, USA.

出版信息

Med Image Comput Comput Assist Interv. 2016 Oct;9901:185-193. doi: 10.1007/978-3-319-46723-8_22. Epub 2016 Oct 2.

Abstract

Accurate segmentation of perimysium plays an important role in early diagnosis of many muscle diseases because many diseases contain different perimysium inflammation. However, it remains as a challenging task due to the complex appearance of the perymisum morphology and its ambiguity to the background area. The muscle perimysium also exhibits strong structure spanned in the entire tissue, which makes it difficult for current local patch-based methods to capture this long-range context information. In this paper, we propose a novel spatial clockwork recurrent neural network (spatial CW-RNN) to address those issues. Specifically, we split the entire image into a set of non-overlapping image patches, and the semantic dependencies among them are modeled by the proposed spatial CW-RNN. Our method directly takes the 2D structure of the image into consideration and is capable of encoding the context information of the entire image into the local representation of each patch. Meanwhile, we leverage on the structured regression to assign one prediction mask rather than a single class label to each local patch, which enables both efficient training and testing. We extensively test our method for perimysium segmentation using digitized muscle microscopy images. Experimental results demonstrate the superiority of the novel spatial CW-RNN over other existing state of the arts.

摘要

肌束膜的准确分割在许多肌肉疾病的早期诊断中起着重要作用,因为许多疾病都包含不同程度的肌束膜炎。然而,由于肌束膜形态的复杂外观及其与背景区域的模糊性,这仍然是一项具有挑战性的任务。肌肉肌束膜还呈现出跨越整个组织的强大结构,这使得当前基于局部图像块的方法难以捕捉这种长距离上下文信息。在本文中,我们提出了一种新颖的空间发条循环神经网络(spatial CW-RNN)来解决这些问题。具体来说,我们将整个图像分割成一组不重叠的图像块,并通过所提出的空间CW-RNN对它们之间的语义依赖关系进行建模。我们的方法直接考虑图像的二维结构,能够将整个图像的上下文信息编码到每个图像块的局部表示中。同时,我们利用结构化回归为每个局部图像块分配一个预测掩码而不是单个类别标签,这使得训练和测试都更加高效。我们使用数字化肌肉显微镜图像对我们的肌束膜分割方法进行了广泛测试。实验结果证明了新颖的空间CW-RNN相对于其他现有先进方法的优越性。

相似文献

1
Spatial Clockwork Recurrent Neural Network for Muscle Perimysium Segmentation.
Med Image Comput Comput Assist Interv. 2016 Oct;9901:185-193. doi: 10.1007/978-3-319-46723-8_22. Epub 2016 Oct 2.
2
AUTOMATIC MUSCLE PERIMYSIUM ANNOTATION USING DEEP CONVOLUTIONAL NEURAL NETWORK.
Proc IEEE Int Symp Biomed Imaging. 2015 Apr;2015:205-208. doi: 10.1109/ISBI.2015.7163850. Epub 2015 Jul 23.
3
Scene Segmentation with DAG-Recurrent Neural Networks.
IEEE Trans Pattern Anal Mach Intell. 2018 Jun;40(6):1480-1493. doi: 10.1109/TPAMI.2017.2712691. Epub 2017 Jun 6.
4
Hierarchical multi-atlas label fusion with multi-scale feature representation and label-specific patch partition.
Neuroimage. 2015 Feb 1;106:34-46. doi: 10.1016/j.neuroimage.2014.11.025. Epub 2014 Nov 20.
5
Object class segmentation of RGB-D video using recurrent convolutional neural networks.
Neural Netw. 2017 Apr;88:105-113. doi: 10.1016/j.neunet.2017.01.003. Epub 2017 Jan 30.
6
7
Physical continuity of the perimysium from myofibers to tendons: involvement in lateral force transmission in skeletal muscle.
J Struct Biol. 2007 Jul;159(1):19-28. doi: 10.1016/j.jsb.2007.01.022. Epub 2007 Mar 3.
8
Dermoscopic Image Segmentation via Multistage Fully Convolutional Networks.
IEEE Trans Biomed Eng. 2017 Sep;64(9):2065-2074. doi: 10.1109/TBME.2017.2712771. Epub 2017 Jun 7.
9
Automatic bladder segmentation from CT images using deep CNN and 3D fully connected CRF-RNN.
Int J Comput Assist Radiol Surg. 2018 Jul;13(7):967-975. doi: 10.1007/s11548-018-1733-7. Epub 2018 Mar 19.
10
Hierarchical Recurrent Neural Hashing for Image Retrieval With Hierarchical Convolutional Features.
IEEE Trans Image Process. 2018;27(1):106-120. doi: 10.1109/TIP.2017.2755766.

引用本文的文献

1
Discovery and generalization of tissue structures from spatial omics data.
Cell Rep Methods. 2024 Aug 19;4(8):100838. doi: 10.1016/j.crmeth.2024.100838. Epub 2024 Aug 9.
2
Stroke-GFCN: ischemic stroke lesion prediction with a fully convolutional graph network.
J Med Imaging (Bellingham). 2023 Jul;10(4):044502. doi: 10.1117/1.JMI.10.4.044502. Epub 2023 Jul 17.
3
A Residual Fusion Network for Osteosarcoma MRI Image Segmentation in Developing Countries.
Comput Intell Neurosci. 2022 Aug 3;2022:7285600. doi: 10.1155/2022/7285600. eCollection 2022.
4
CVD-HNet: Classifying Pneumonia and COVID-19 in Chest X-ray Images Using Deep Network.
Wirel Pers Commun. 2022;126(4):3279-3303. doi: 10.1007/s11277-022-09864-y. Epub 2022 Jun 19.
5
BUSIS: A Benchmark for Breast Ultrasound Image Segmentation.
Healthcare (Basel). 2022 Apr 14;10(4):729. doi: 10.3390/healthcare10040729.
6
Segmentation and classification on chest radiography: a systematic survey.
Vis Comput. 2023;39(3):875-913. doi: 10.1007/s00371-021-02352-7. Epub 2022 Jan 8.
7
Deep-learning in situ classification of HIV-1 virion morphology.
Comput Struct Biotechnol J. 2021 Oct 5;19:5688-5700. doi: 10.1016/j.csbj.2021.10.001. eCollection 2021.
8
A review on deep learning in medical image analysis.
Int J Multimed Inf Retr. 2022;11(1):19-38. doi: 10.1007/s13735-021-00218-1. Epub 2021 Sep 4.
9
Artificial intelligence and digital pathology: Opportunities and implications for immuno-oncology.
Biochim Biophys Acta Rev Cancer. 2021 Apr;1875(2):188520. doi: 10.1016/j.bbcan.2021.188520. Epub 2021 Feb 6.
10
Deep Learning Techniques for Medical Image Segmentation: Achievements and Challenges.
J Digit Imaging. 2019 Aug;32(4):582-596. doi: 10.1007/s10278-019-00227-x.

本文引用的文献

1
Beyond Classification: Structured Regression for Robust Cell Detection Using Convolutional Neural Network.
Med Image Comput Comput Assist Interv. 2015 Oct;9351:358-365. doi: 10.1007/978-3-319-24574-4_43. Epub 2015 Nov 18.
2
Polymyositis and dermatomyositis.
Lancet. 2003 Sep 20;362(9388):971-82. doi: 10.1016/S0140-6736(03)14368-1.
3
Long short-term memory.
Neural Comput. 1997 Nov 15;9(8):1735-80. doi: 10.1162/neco.1997.9.8.1735.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验