1 Graduate Institute of Statistics, National Central University, Taoyuan City, Taiwan.
2 Statistical Analysis Section, Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan.
Stat Methods Med Res. 2018 Sep;27(9):2842-2858. doi: 10.1177/0962280216688032. Epub 2017 Jan 16.
Developing a personalized risk prediction model of death is fundamental for improving patient care and touches on the realm of personalized medicine. The increasing availability of genomic information and large-scale meta-analytic data sets for clinicians has motivated the extension of traditional survival prediction based on the Cox proportional hazards model. The aim of our paper is to develop a personalized risk prediction formula for death according to genetic factors and dynamic tumour progression status based on meta-analytic data. To this end, we extend the existing joint frailty-copula model to a model allowing for high-dimensional genetic factors. In addition, we propose a dynamic prediction formula to predict death given tumour progression events possibly occurring after treatment or surgery. For clinical use, we implement the computation software of the prediction formula in the joint.Cox R package. We also develop a tool to validate the performance of the prediction formula by assessing the prediction error. We illustrate the method with the meta-analysis of individual patient data on ovarian cancer patients.
开发个性化死亡风险预测模型对于改善患者护理至关重要,涉及个性化医学领域。基因组信息和大型元分析数据集的日益普及,促使人们将基于 Cox 比例风险模型的传统生存预测方法进行扩展。本文旨在根据元分析数据中的遗传因素和肿瘤动态进展状态,开发一种基于遗传因素和肿瘤动态进展状态的个性化死亡风险预测公式。为此,我们将现有的联合脆弱性- Copula 模型扩展到允许高维遗传因素的模型。此外,我们提出了一种动态预测公式,用于预测在治疗或手术后可能发生肿瘤进展事件时的死亡情况。为了临床应用,我们在 joint.Cox R 包中实现了预测公式的计算软件。我们还开发了一种工具,通过评估预测误差来验证预测公式的性能。我们通过卵巢癌患者个体患者数据的荟萃分析来说明该方法。