Emura Takeshi, Chen Yi-Hau
Graduate Institute of Statistics, National Central University, Jhongli, Taiwan.
Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
Stat Methods Med Res. 2016 Dec;25(6):2840-2857. doi: 10.1177/0962280214533378. Epub 2014 May 11.
Dependent censoring arises in biomedical studies when the survival outcome of interest is censored by competing risks. In survival data with microarray gene expressions, gene selection based on the univariate Cox regression analyses has been used extensively in medical research, which however, is only valid under the independent censoring assumption. In this paper, we first consider a copula-based framework to investigate the bias caused by dependent censoring on gene selection. Then, we utilize the copula-based dependence model to develop an alternative gene selection procedure. Simulations show that the proposed procedure adjusts for the effect of dependent censoring and thus outperforms the existing method when dependent censoring is indeed present. The non-small-cell lung cancer data are analyzed to demonstrate the usefulness of our proposal. We implemented the proposed method in an R "compound.Cox" package.
当感兴趣的生存结局因竞争风险而被截尾时,在生物医学研究中就会出现相依截尾。在具有微阵列基因表达的生存数据中,基于单变量Cox回归分析的基因选择在医学研究中被广泛使用,然而,这仅在独立截尾假设下才有效。在本文中,我们首先考虑一个基于copula的框架来研究相依截尾对基因选择造成的偏差。然后,我们利用基于copula的相依性模型开发一种替代的基因选择程序。模拟结果表明,所提出的程序对相依截尾的影响进行了调整,因此在确实存在相依截尾的情况下优于现有方法。通过对非小细胞肺癌数据的分析来证明我们提议的实用性。我们在R语言的“compound.Cox”包中实现了所提出的方法。