Suppr超能文献

基于强化学习和神经网络的经验灰狼优化算法。

Experienced Gray Wolf Optimization Through Reinforcement Learning and Neural Networks.

出版信息

IEEE Trans Neural Netw Learn Syst. 2018 Mar;29(3):681-694. doi: 10.1109/TNNLS.2016.2634548. Epub 2017 Jan 10.

Abstract

In this paper, a variant of gray wolf optimization (GWO) that uses reinforcement learning principles combined with neural networks to enhance the performance is proposed. The aim is to overcome, by reinforced learning, the common challenge of setting the right parameters for the algorithm. In GWO, a single parameter is used to control the exploration/exploitation rate, which influences the performance of the algorithm. Rather than using a global way to change this parameter for all the agents, we use reinforcement learning to set it on an individual basis. The adaptation of the exploration rate for each agent depends on the agent's own experience and the current terrain of the search space. In order to achieve this, experience repository is built based on the neural network to map a set of agents' states to a set of corresponding actions that specifically influence the exploration rate. The experience repository is updated by all the search agents to reflect experience and to enhance the future actions continuously. The resulted algorithm is called experienced GWO (EGWO) and its performance is assessed on solving feature selection problems and on finding optimal weights for neural networks algorithm. We use a set of performance indicators to evaluate the efficiency of the method. Results over various data sets demonstrate an advance of the EGWO over the original GWO and over other metaheuristics, such as genetic algorithms and particle swarm optimization.

摘要

在本文中,提出了一种使用强化学习原理与神经网络相结合来增强性能的灰狼优化算法(GWO)变体。其目的是通过强化学习克服为算法设置正确参数的常见挑战。在 GWO 中,使用单个参数来控制探索/利用率,该参数会影响算法的性能。我们不是使用全局方式为所有智能体更改此参数,而是使用强化学习在个体基础上设置它。每个智能体的探索率的适应性取决于智能体自身的经验和搜索空间的当前地形。为了实现这一点,基于神经网络构建了经验库,以将一组智能体的状态映射到一组特定的影响探索率的动作。经验库由所有搜索智能体更新,以反映经验并持续增强未来的动作。所得的算法称为具有经验的灰狼优化算法(EGWO),并通过解决特征选择问题和为神经网络算法找到最佳权重来评估其性能。我们使用一组性能指标来评估该方法的效率。在各种数据集上的结果表明,EGWO 优于原始 GWO 以及其他元启发式算法(如遗传算法和粒子群优化算法)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验