Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
Lab Chip. 2017 Feb 14;17(4):579-590. doi: 10.1039/c6lc01439a.
Optical DNA mapping has over the last decade emerged as a very powerful tool for obtaining long range sequence information from single DNA molecules. In optical DNA mapping, intact large single DNA molecules are labeled, stretched out, and imaged using a fluorescence microscope. This means that sequence information ranging over hundreds of kilobasepairs (kbp) can be obtained in one single image. Nanochannels offer homogeneous and efficient stretching of DNA that is crucial to maximize the information that can be obtained from optical DNA maps. In this review, we highlight progress in the field of optical DNA mapping in nanochannels. We discuss the different protocols for sequence specific labeling and divide them into two main categories, enzymatic labeling and affinity-based labeling. Examples are highlighted where optical DNA mapping is used to gain information on length scales that would be inaccessible with traditional techniques. Enzymatic labeling has been commercialized and is mainly used in human genetics and assembly of complex genomes, while the affinity-based methods have primarily been applied in bacteriology, for example for rapid analysis of plasmids encoding antibiotic resistance. Next, we highlight how the design of nanofluidic channels can been altered in order to obtain the desired information and discuss how recent advances in the field make it possible to retrieve information beyond DNA sequence. In the outlook section, we discuss future directions of optical DNA mapping, such as fully integrated devices and portable microscopes.
光学 DNA 图谱分析技术在过去十年中已成为从单个 DNA 分子获取长程序列信息的强有力工具。在光学 DNA 图谱分析中,完整的大型单个 DNA 分子被标记、拉伸并通过荧光显微镜成像。这意味着可以在单个图像中获得数百千碱基对 (kbp) 的序列信息。纳米通道提供了 DNA 的均匀和高效拉伸,这对于从光学 DNA 图谱中获取最大信息量至关重要。在这篇综述中,我们强调了纳米通道中光学 DNA 图谱分析领域的进展。我们讨论了用于序列特异性标记的不同方案,并将其分为两类,即酶标记和基于亲和力的标记。突出了光学 DNA 图谱分析用于获取传统技术无法获取的长度尺度信息的示例。酶标记已商业化,主要用于人类遗传学和复杂基因组的组装,而基于亲和力的方法主要应用于细菌学,例如用于快速分析编码抗生素抗性的质粒。接下来,我们强调了如何改变纳米流体通道的设计以获取所需信息,并讨论了该领域的最新进展如何使得超越 DNA 序列的信息检索成为可能。在展望部分,我们讨论了光学 DNA 图谱分析的未来方向,例如完全集成的设备和便携式显微镜。